999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

免疫毒素LHRHPE40對HeLa細胞表面硬度的影響

2014-07-10 21:19:11張晶
分析化學 2014年6期
關鍵詞:實驗研究

張晶

摘 要 利用基于原子力顯微鏡(AFM)的力譜技術, 在正常生長的單個活細胞表面上, 實時動態地研究了免疫毒素HeLa細胞表面硬度的影響。采用HertzSneddon模型計算所得力曲線相應的楊氏模量。實驗表明,

1 引 言

不斷發展的納米技術使得科研工作者可以在納米級尺度上操縱生物分子和細胞,同時在pN(皮牛)級別上獲得各種分子間的相互作用力[1~3]。在這些納米技術中,原子力顯微鏡(AFM)是一項具有多種功能的技術手段。AFM可以在準生理條件下對生物樣品進行直接測量,不需要復雜的樣品處理過程,這使其迅速地被應用于各種生物樣品的研究中[4~7]。

在過去的十多年中,研究者應用傳統分子生物學實驗方法對腫瘤細胞的生化性質進行了大量研究。但是,腫瘤細胞的機械硬度一直都被忽視,盡管腫瘤組織的入侵過程和腫瘤細胞的表面硬度有密切關系[8,9]。近年,細胞硬度作為腫瘤治療中的一項潛在的生物物理指標受到越來越多的關注[10,11]。在單細胞水平上分析細胞的表面硬度對理解腫瘤組織對化療藥物的反應和評價腫瘤的預后效果十分重要[12]。1992年,Tao等應用AFM研究了被切片的生物組織的硬度[13]。Hoh等應用AFM研究了活細胞的表面硬度[14]。基于這些開創性的研究工作,越來越多的研究者致力于探測在各種不同生理條件下活細胞硬度的變化。Kloxin等通過改變基底成分分析了基底機械性能對心臟瓣膜間質細胞活化成肌成纖維細胞的影響,對于組織再生工程合理地設計移植材料有著重要的意義[15]。Cross等用AFM測量了多種癌癥患者胸膜轉移癌細胞的硬度,發現轉移癌細胞的細胞硬度比良性細胞軟70%,為腫瘤的診斷和治療提供了依據[16]。

免疫毒素LHRHPE40是一種高特異性的針對大量表達LHRH受體(LHRHR)的癌細胞組織的抗癌藥物。LHRHPE40的作用機理是:導向部分配體LHRH通過其自身的特異性識別能力與目標組織細胞表面的LHRHR結合,毒性部分PE40通過跨膜轉運的方式進入細胞內,發揮其藥效,殺死腫瘤細胞[17]。

本研究采用AFM技術實時動態研究了LHRHPE40對HeLa細胞的硬度的影響,并且初步探索了引起HeLa細胞硬度發生變化的原因。

2 實驗部分

2.1 儀器與試劑

4 結 論

本研究應用AFM力譜技術考察了免疫毒素LHRHPE40對HeLa細胞的表面硬度的影響。結果表明,LHRHPE40會造成HeLa細胞在凋亡的過程中表面硬度逐步增加。熒光實驗結果表明, HeLa細胞硬度的增加與胞內微絲骨架的重組聚集有關。這些實驗結果為從細胞表面硬度角度掌握LHRHPE40的藥用效果和作用機理提供了重要信息。但是,在LHRHPE40的作用過程中,細胞內的各種生化組分發生了何種變化,仍需要借助其它如拉曼光譜等實驗技術的細胞成分分析功能進行進一步研究。

References

1 Neuman K C, Nagy A. Nat. Methods, 2008, 5(6): 491-505

2 Dickenson N E, Armendariz K P, Huckabay H A, Livanec P W, Dunn R C. Anal. Bioanal. Chem., 2010, 396(1): 31-43

3 JI TianRong, LIANG ZhongWei, ZHU XinYu, SHAO YuanHua. Chinese J. Anal. Chem., 2010, 38(12): 1821-1827

紀天容, 梁中偉, 朱新宇, 邵元華. 分析化學, 2010, 38(12): 1821-1827

4 Muller D J, Dufrene Y F. Nat. Nanotechnol., 2008, 3(5): 261-269

5 Jiang J G, Hao X, Cai M J, Shan Y P, Shang X, Tang Z Y, Wang H D . Nano Lett., 2009, 9(12): 4489-4493

6 Zhu R, Rupprecht A, Pohl E E. J. Am. Chem. Soc., 2013, 135(9): 3640-3646

7 Shi X L, Zhang X J, Xia T, Fang X H. Nanomedicine, 2012, 7(10): 1625-1637

8 Kumar S, Weaver V. Cancer Metast. Rev., 2009, 28(1): 113-127

9 Mierke C T. Cell Biochem. Biophys., 2011, 61(2): 217-236

10 Wilson L, Cross S, Gimzewski J, Rao J Y. Idrugs, 2010, 13(12): 847-851

11 Suresh S. Nat. Nanotechnol., 2007, 2(12): 748-749

12 Xiao L F, Tang M J, Li Q F, Zhou A H. Anal. MethodsUk, 2013, 5(4): 874-879

13 Tao N J, Lindsay S M, Lees S. Biophys. J., 1992, 63(4): 1165-1169

14 Hoh J H, Schoenenberger C A. J. Cell Sci., 1994, 107(5): 1105-1114

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

猜你喜歡
實驗研究
記一次有趣的實驗
FMS與YBT相關性的實證研究
微型實驗里看“燃燒”
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
做個怪怪長實驗
EMA伺服控制系統研究
新版C-NCAP側面碰撞假人損傷研究
NO與NO2相互轉化實驗的改進
主站蜘蛛池模板: 国产一二三区在线| 在线另类稀缺国产呦| 伊人久久青草青青综合| 香蕉久人久人青草青草| 午夜a级毛片| 香蕉99国内自产自拍视频| 久久久精品无码一区二区三区| 国产精品冒白浆免费视频| 亚洲国产看片基地久久1024| 亚洲av无码片一区二区三区| 中文字幕亚洲另类天堂| 国产国模一区二区三区四区| 米奇精品一区二区三区| 久久香蕉国产线看观看精品蕉| 亚洲日本中文字幕天堂网| 日韩欧美中文字幕在线韩免费| 久久天天躁狠狠躁夜夜2020一 | 日本高清在线看免费观看| 日本免费新一区视频| 久久久久青草线综合超碰| 国产h视频在线观看视频| 一级毛片无毒不卡直接观看| 香蕉国产精品视频| 国产成人久久综合777777麻豆| 五月婷婷精品| 久久伊人操| 91青青草视频在线观看的| 漂亮人妻被中出中文字幕久久| 无码综合天天久久综合网| 欧美一区福利| 直接黄91麻豆网站| 国产自在线播放| 久草视频一区| 在线观看无码a∨| 久草视频一区| 国产va免费精品| 丁香六月激情综合| 国产午夜人做人免费视频| 亚洲香蕉久久| 国产成人精品视频一区二区电影| 亚洲a免费| 狼友视频一区二区三区| 波多野结衣一区二区三区88| 手机在线免费不卡一区二| 中文字幕无码制服中字| 又爽又黄又无遮挡网站| 久久国产乱子| 久久人人妻人人爽人人卡片av| 日韩欧美成人高清在线观看| 国产成人综合网| 真实国产精品vr专区| 亚洲中文无码h在线观看| 真实国产乱子伦视频| 综1合AV在线播放| 欧美a级在线| 久久久精品国产SM调教网站| 色综合天天综合中文网| 九色91在线视频| 午夜精品久久久久久久99热下载| 全午夜免费一级毛片| 性视频久久| 色窝窝免费一区二区三区 | 九九九国产| 午夜日韩久久影院| 99精品欧美一区| 波多野结衣一区二区三区AV| 色综合狠狠操| 久久久久青草大香线综合精品| 中文字幕欧美日韩高清| 国产凹凸一区在线观看视频| 综合成人国产| 午夜精品福利影院| 国产亚洲欧美在线视频| 亚洲一区波多野结衣二区三区| 四虎亚洲精品| 亚洲美女一区二区三区| 亚洲视频黄| 综合色区亚洲熟妇在线| 久久久91人妻无码精品蜜桃HD| 六月婷婷精品视频在线观看| 亚瑟天堂久久一区二区影院| 日本一本正道综合久久dvd|