999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

3,5-二氨基苯甲酸構筑的Zn(Ⅱ)、Cd(Ⅱ)兩種配合物的合成及晶體結構

2014-06-14 10:34:00張美麗任宜霞陳小利閆洪濤
無機化學學報 2014年4期
關鍵詞:化學

張美麗 任宜霞 陳小利 閆洪濤

(1西北大學化學與材料科學學院,西安 710069)(2延安大學化學與化工學院,陜西省化學反應工程重點實驗室,延安 716000)

Recently,the chemistry of Zn(Ⅱ)and Cd(Ⅱ)complexes has attracted interest for a number of reasons.The Zn(Ⅱ) and Cd(Ⅱ) are d10electronic configuration and can adopt different coordination numbers from 4 to 6.Moreover,the Zn and Cd complexes offer not only the fascinating structure,but only a wide range of potential application in many aspects,such as optical,electricalconductivity,catalysis and even photoluminescent materials[1-4].Up to now,a large numbers of complexes formed by Zn(Ⅱ),Cd(Ⅱ) and various N-donor,aromatic/heterocyclic multicarboxylate ligands have been successfully synthesized and characterized[5-10]. However, the complex based on 3,5-diaminobenzoic acid with Zn(Ⅱ),Cd(Ⅱ) have never been reported before.

Inspired by our previous works[11],we employed 3,5-diaminobenzoic acid and Zn(Ⅱ) ,Cd(Ⅱ) to synthesize two novel complexes,namely,[Cd(diaba)(phen)2]NO3·H2O(1)and [Zn(diaba)(2,2′-bipy)2](2)(diaba=3,5-diaminobenzoic acid;phen=1,10-phenanthroline,2,2′-bipy=2,2′-bipyridine),which provides the first example of complex based on 3,5-diaminobenzoic acid-Zn(Ⅱ) ,Cd(Ⅱ).

1 Experimental

1.1 Materials and methods

The reagents and solvents employed were commercially available and used as received without further purification.Elemental analyses for carbon,hydrogen,and nitrogen were performed with a Vario EL III elemental analyzer.The FTIR spectra were recorded from KBr pellets in the range 4 000~400cm-1on a Bruker EQUINOX-55 spectrometer.Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer at room temperature.Thermogravimetric analyses (TGA)were performed under nitrogen with a heating rate of 10 ℃·min-1usingaNETZSCH STA 449C thermogravimetric analyzer.

1.2 Syntheses of title complex

Single-crystal samples of complex 2 were obtained by the similar method as described for 1.

[Cd(diaba)(phen)2]NO3·H2O(1).1 was synthesized hydrothermally in a 23-mL teonlined autoclave by heating a mixture of Cd(NO3)2·6H2O(1.0 mmol),daba(1.0 mmol),phen (0.5 mmol),and H2O (8 mL)at 160℃for 4 days.After the reactive mixture was slowly cooled to room temperature,colorless block crystals of 1 were obtained (Yield:41%,based on Cd).Anal.Calcd.for C31H27O6N7Cd(%):C,52.74;H,3.85;N,13.89.Found(%):C,52.45;H,3.53;N,13.31.IR(cm-1):3 327(br),1 618(w),1 558(s),1 411(s),1 375(w),1 184(w),999(w),854(s),777(s).

[Zn(diaba)(2,2′-bipy)2](2).Yield:38%(based on Zn).Anal.Calcd.for C27H23N6O2Zn(%):C,61.32;H,4.38;N,15.89.Found(%):C,61.26;H,4.54;N,15.96.IR(cm-1):3 464(br),1 602(s),1 537(s),1 438(s),1 354(s),1 195(w),1 026(s),862(w),788(m).

1.3 Crystal structure determination

Diffraction intensities for the complexes 1 and 2 were collected at 293 K on a Bruker SMART 1000 CCD diffractometer employing graphite-monochromated Mo Kα radiation (λ=0.071 073nm).A semiempirical absorption correction was applied using the SADABS program[12].The structure was solved by direct methods and refined by full-matrix least-squares on F2using the SHELXS 97 and SHELXL 97 programs,respectively[13-14].Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geometrically calculated positions.The crystallographic data for complex 1 are listed in Table1,and selected bond lengths and angles are listed in Table2.

CCDC:936420,1;936421,2.

Table1 Crystallographic data for compounds 1 and 2

Continued Table1

Table2 Selected bond length(nm)and angles(°)for compounds 1 and 2

2 Result and discussion

2.1 Crystal structure of[Cd(diaba)(phen)2]NO3·H2O(1)

The structures ofthe two complexes were determined by single-crystal X-ray diffraction analyses.Complex 1 belongs to orthorhombic,space group Fddd.While complex 2 belongs to monoclinic with C2/c space group.

The crystalstructure of1 consists ofone crystallographic independent CdIIcation,one diaba ligand and two phen ligands.Each CdIIcation is surrounded by four nitrogen atoms from two 1,10-phen ligands,and two oxygen atoms from one diaba ligand,composing a distorted octahedron pyramidal geometry(Fig.1).The Cd-N bond lengths are 0.233 67(19),0.234 36(18)nm,respectively,and the Cd-O bond lengths are 0.233 2(2)nm,which drop into the normal scope of Cd-N and Cd-O bond lengths[15].The details are depicted in Table2.The deproton NO3-ions do not coordinate with the central atoms,acting as free ions in the crystal lattice to charge balance.At last the Cd octahedrons,crystal waters and NO3-ions construct the new 3D supramolecular network by intricate hydrogen bonds and weak π … π stacting interaction.

Fig.1 Coordination environments of Cd atom in complex 1

Fig.2 Coordination environments of Zn atom in complex 2

The structure of complex 2 is the same as complex 1,they are mononuclear structure.Each ZnIIion is six-coordinated to four nitrogen atoms of two 2,2′-bipy ligands and two oxygen atoms of one diaba ligand,fabricating a distorted octahedron pyramidal geometry (Fig.2).The Zn-N bond lengths are 0.210 82(16),0.212 01(16)nm,respectively,and the Zn-O bond lengths are 0.221 43(15)nm,which drop into the normal scope of Zn-N and Zn-O bond lengths[16].The 3D supramolecular network is also constructed via intricate hydrogen bonds and weak π…π stacting interaction.

2.2 Thermogravimetric analyses

Thermogravimetric analyses have been performed in air for 1 and 2 between 20 and 800℃(Fig.3,Fig.4).TGA curve of complex 1 illustrates that weight loss was observed for lattice water and NO3-ion up to 300℃;after this,significant weight loss occurred and endedatca.700℃,indicatingthecomplete decomposition of the complex to form CdO.This conclusion has been also supported by the percentage of the residues(18.03%),which is in accordance with the expected value (18.13%).For 2,there are not lattice and coordination water molecules and thus decomposition of the organic components occurs at 430℃,indicating the complete decomposition of the complex to form ZnO(Obsd:14.7%and Calcd:15.3%).

Fig.3 TGA curve for complex 1

Fig.4 TGA curve for complex 2

2.3 Fluorescent properties

Solid-state Luminescentemission spectra of complexes 1 and 2 are depicted in Fig.5.The intense broad photoluminescence emissions are found at 399 nm(λex=335 nm)for 1,at 395 nm(λex=325 nm)for 2.In order to understand the nature of the emission band,the photoluminescence property of free diaba ligand was measured with the observation of one weak emission at 367 nm (λex=300 nm).In comparison to the free ligand,most of the emission maxima of complexes 1 and 2 are changed,which are neither metal-to-ligand charge transfer(MLCT)nor ligand-tometal transfer (LMCT)in nature,since the ZnIIand CdIIions are difficult to oxidize or reduce.Thus,they may be assigned to intraligand (π-π*)fluorescent emission[17].Many aromatic ligands that are not strongly emissive themselves display significant luminescence when coordinated to ZnIIor CdII[18].The enhancement of luminescence is perhaps a result of the coordination effect of those ligands to the metal center,which effectively increases the rigidity of ligands,thereby reducing the non-radiative decay of the intraligand(π-π*)excited state[19].

Fig.5 Solid-state emission spectra of 1(low curve),2(tall curve)at room temperature

[1]Allendorf M D,Bauer C A,Bhaktaa R K,et al.Chem.Soc.Rev.,2009,38:1330-1352

[2]Rocha J,Carlos L D,Paza F A A,et al.Chem.Soc.Rev.,2011,40:926-940

[3]Karabach Y Y,Silva M F C G,Kopylovich M N,et al.Inorg.Chem.,2010,49:11096-11105

[4]XUE Ming(薛銘),CHEN Si-Ru(陳思如),GUO Li-Jia(郭莉佳),et al.Chem.J.Chinese Universities(高等學校化學學報),2012,33(9):1889-1894

[5]Ma L F,Wang L Y,Wang Y Y,et al.Inorg.Chem.,2009,48(3):915-924

[6]Ma L M,Li B,Sun X Y,et al.Anorg.Allg.Chem.,2010,636:1606-1611

[7]Xu C Y,Li L K,Wang Y P,et al.Cryst.Growth Des.,2011,5:1869-1879

[8]Sun D,Yan Z H,Blatov V A,et al.Cryst.Growth Des.,2013,13(3):1277-1289

[9]Zhang Z H,Chen S C,He M Y,et al.Cryst.Growth Des.,2013,13(3):996-1001

[10]HU Jing-Song(胡勁松),LIU Xi-Hui(劉希慧),SHI Jian-Jun(石建軍),et al.Chinese J.Inorg.Chem.(無機化學學報),2013,29(3):444-448

[11]Zhang M L,Li D S,Wang J J,et al.Dalton Trans.,2009,11:5355-5364

[12]Sheldrick G M.SADABS,A Program for Empirical Absorption Correction of Area detector Data,University of Gttingen,Germany,1997.

[13]Sheldrick G M.SHELXS 97,Program for Crystal Structure Solution,University of Gttingen,Germany,1997.

[14]Sheldrick G M.SHELXL 97,Program for Crystal Structure Refinement,University of Gttingen,Germany,1997

[15]Tian D,Pang Y,Zhou Y H,et al.CrystEngComm,2011,13:957-966

[16]Liu B,Yang G P,Wang Y Y,et al.Inorg.Chim.Acta,2011,367:127-134

[17]Wen L L,Dang D B,Duan C Y,et al.Inorg.Chem.,2005,44:7161-7170

[18]Bai H Y,Ma J F,Yang J,et al.Cryst.Growth Des.,2010,10:1946-1959

[19]Chang Z,Zhang A S,Hu T L,et al.Cryst.Growth Des.2009,9:4840-4846

猜你喜歡
化學
化學與日常生活
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
化學:我有我“浪漫”
化學:舉一反三,有效學習
考試周刊(2016年63期)2016-08-15 22:51:06
化學與健康
絢麗化學綻放
主站蜘蛛池模板: 国产欧美精品午夜在线播放| 亚洲第一精品福利| 久久精品国产免费观看频道| 午夜国产大片免费观看| 久久国产拍爱| 亚洲久悠悠色悠在线播放| 国产a在视频线精品视频下载| 在线色国产| 精品国产欧美精品v| 亚洲精品日产精品乱码不卡| 成人在线视频一区| 色综合久久88色综合天天提莫 | 97青青青国产在线播放| 伊人天堂网| 大陆精大陆国产国语精品1024| 久久这里只有精品23| 久久综合伊人77777| 亚洲首页在线观看| 精品国产电影久久九九| 免费在线色| 一级香蕉视频在线观看| 最新日韩AV网址在线观看| 国产探花在线视频| Aⅴ无码专区在线观看| 华人在线亚洲欧美精品| 亚洲Va中文字幕久久一区| 日韩成人高清无码| 日韩天堂视频| 久无码久无码av无码| 无码国产伊人| 亚洲精品老司机| 青青青草国产| 亚洲久悠悠色悠在线播放| 国产成人精品一区二区| 国产激情无码一区二区APP | 国产综合欧美| 老汉色老汉首页a亚洲| 免费全部高H视频无码无遮掩| 亚洲无线一二三四区男男| 视频二区亚洲精品| 欧美亚洲国产一区| 久久性视频| 免费人成视频在线观看网站| 国产原创第一页在线观看| 国产日韩欧美一区二区三区在线| 亚洲精品另类| 欧美在线免费| 色AV色 综合网站| 激情无码字幕综合| 亚洲手机在线| 国内精品自在自线视频香蕉| 欧美色伊人| 欧美日韩精品一区二区在线线| 免费女人18毛片a级毛片视频| 亚洲午夜片| 国产靠逼视频| 制服丝袜一区二区三区在线| 在线播放真实国产乱子伦| 国产在线专区| 伊人丁香五月天久久综合| 国产亚洲欧美在线中文bt天堂| 这里只有精品在线播放| 98超碰在线观看| 日韩天堂视频| 97色伦色在线综合视频| 亚洲丝袜中文字幕| a亚洲视频| 国产成人精品综合| 欧类av怡春院| 欧美三級片黃色三級片黃色1| 韩日免费小视频| 亚洲高清日韩heyzo| 日本午夜视频在线观看| 欧美视频在线不卡| 国产在线观看成人91| 欧美中文字幕在线二区| 97国产精品视频自在拍| 国产不卡一级毛片视频| 欧美影院久久| 亚洲国产中文在线二区三区免| 欧美日韩另类国产| 亚洲综合二区|