孫錦華 王雪梅 吳小鈞
?
短突發系統數據輔助載波同步的導頻設計
孫錦華*①王雪梅①吳小鈞②
①(西安電子科技大學綜合業務網理論及關鍵技術國家重點實驗室 西安 710071)②(長安大學信息工程學院 西安 710064)
對于短突發通信系統,基于時域相關函數數據輔助的頻率估計方法中導頻位置、導頻數目對載波頻率估計精度和估計范圍有很大的影響,該文提出一種具有較高估計精度的基于相關函數和的頻率估計算法,并推導出該算法的理論估計方差。通過分析導頻位置對估計范圍和估計精度的影響,提出一種可變間距數據幀結構(VDPM)設計方案,即根據系統估計精度和估計范圍的要求選擇合適的導頻間距。理論分析和仿真結果表明VDPM幀結構可以靈活地兼顧估計精度和估計范圍的要求,基于相關函數和的頻率估計算法僅利用很短的導頻符號就能達到較高的估計精度,適合在短突發通信系統中應用。
短突發通信;導頻符號;載波同步;幀結構



圖1 VDPM數據幀結構
假定到達接收機的信號為經過高斯白噪聲信道傳輸的單載波突發信號,理想的時間同步信息可以通過導頻和數據獲得,所以通過匹配濾波器和采樣之后的等效基帶信號可以表示為

影響DA同步精度與范圍的因素主要有導頻結構和對應于導頻結構的估計算法[7],而導頻結構的設計又需要根據系統要求及估計算法所能達到的同步精度和范圍進行綜合權衡。因此需要研究估計算法的理論界,即參數無偏估計時估計方差的克拉美羅界(CRB)。下面針對VDPM導頻結構推導基于相關函數和頻率估計算法的理論估計方差。




為了簡化式(5),令

其中

對式(6)歸一化可得






圖2 VDPM數據幀結構的4種情況

表1 4種導頻結構的估計范圍及特點
注:4-PM1:用相鄰導頻計算互相關;4-PM2:用間隔導頻計算互相關。



針對本文給出的時域相關函數和的頻率估計算法,導頻的位置、數目會影響載波頻率的估計精度和估計范圍,即頻率估計范圍和頻率估計方差分別滿足式(3)和式(10)。


其次,確定可以選擇的幀結構方案。對于確定的導頻開銷,可以估算出不同導頻結構的估計范圍。根據表1可以看出,PP結構的頻率估計范圍最小,PM結構次之,4-PM1結構最大,在數據長度一定的情況下,這3種結構的估計范圍就確定了,如果數據長度過長,即使4-PM1結構估計范圍也不會很大,所以這3種結構的使用受到導頻間距固定的限制。
綜上所述,采用VDPM導頻結構,可以通過靈活地設置導頻間距達到調整估計范圍、改善估計精度或使用較少導頻開銷的要求。
針對短突發通信系統中導頻位置影響頻率估計精度和估計范圍的問題,本文基于相關函數和頻率估計算法對不同導頻結構的估計范圍和估計精度進行理論分析,并提出了一種具有靈活適用性的VDPM導頻結構。通過仿真驗證了VDPM導頻結構能夠很靈活地兼顧頻率估計范圍和估計精度的要求,對短突發通信中數據長度的變化能夠靈活地調整導頻間距,以滿足系統的需要;同時也驗證了基于相關函數和的頻率估計算法僅利用很短的導頻符號就可以達到很高的估計精度,因此比較適合短突發傳輸系統。

圖3 不同頻偏對QPSK信號BER性能的影響

圖4 不同導頻開銷下的估計誤差均方根

圖5 的BER性能曲線

圖6 的BER性能曲線

圖7 數據長度對BER性能影響曲線

圖8 不同數據長度對PD結構的誤比特率性能
[1] 張華, 張有光, 李國彥. 基于混合粒子濾波的載波估計算法[J]. 北京航空航天大學學報, 2013, 39(2): 184-189.
Zhang Hua, Zhang You-guang, and Li Guo-yan. Carrier estimation algorithm based on novel hybrid particle filtering[J]., 2013, 39(2): 184-189.
[2] 張帥, 張曉林. 數字電視大范圍載波頻偏快速捕獲算法[J]. 北京航空航天大學學報, 2013, 39(2): 225-229.
Zhang Shuai and Zhang Xiao-lin. Rapid large frequency offset estimation for DTMB system[J]., 2013, 39(2): 225-229.
[3] 晏輝, 張忠培. 基于導頻輔助的定時與載波同步環路設計[J].北京航空航天大學學報, 2012, 38(9): 1210-1213.
Yan Hui and Zhang Zhong-pei. Design of data-aided symbol timing and carrier synchronization loop[J]., 2012, 38(9): 1210-1213.
[4] 蔣偉, 樂天. 基于插值的多普勒頻偏和頻率斜升聯合估計算法[J].電子與信息學報, 2013, 35(1): 166-171.
Jiang Wei and Le Tian. Joint estimation of doppler frequency shift and doppler frequency rate based on interpolation[J].&, 2013, 35(1): 166-171.
[5] Ying Y and Ghogho M. Optimal pilot placement for frequency offset estimation and data detection in burst transmission systems[J]., 2005, 9(6): 549-551.
[6] Adireddy S, Tong Lang, and Viswanathan H. Optimal placement of training for frequency-selective block-fading channels[J]., 2002, 48(8): 2338-2352.
[7] Stoica P and Besson O. Training sequence design for frequency offset and frequency-selective channel estimation [J]., 2003, 51(11): 1910-1917.
[8] Noels N, Steendam H, Moeneclaey M,.. Carrier phase and frequency estimation for pilot symbol assisted transmission: bounds and algorithms[J]., 2005, 53(12): 4578-4587.
[9] 姚恩鑫, 樂天, 樊皓, 等. 一種適應高多普勒頻偏的突發傳輸高效導頻圖案[J].電子與信息學報, 2011, 33(11): 2559-2563.
Yao En-xin, Le Tian, Fan Hao,.. A novel pilot structure for burst transmission under high doppler shift [J].&, 2011, 33(11): 2559-2563.
[10] 晏輝, 唐發建, 張忠培, 等. 一種基于低碼率LDPC碼的編碼與導頻聯合輔助載波同步算法[J]. 電子與信息學報, 2011, 33(2): 470-474.
Yan Hui, Tang Fa-jian, Zhang Zhong-pei,.. A joint assisted carrier synchronization algorithm with code and pilot based on low rate LDPC code[J].&, 2011, 33(2): 470-474.
[11] 唐發建. 極低信噪比下編碼輔助迭代同步算法[D]. [碩士論文],電子科技大學, 2011.
Tang Fa-jian. Coded-aided iterative synchronization algorithm at extremely low signal-to-noise[D]. [Master dissertation], University of Electronic Science and Technology of China, 2011.
[12] 史治平, 唐發建, 晏輝, 等. 編碼輔助載波同步算法的優化設計[J].電子科技大學學報, 2012, 41(3): 342-347.
Shi Zhi-ping, Tang Fa-jian, Yan Hui,.. Optimization of code aided carrier synchronization algorithm[J]., 2012, 41(3): 342-347.
[13] 孫錦華, 王雪梅, 吳小鈞. 短突發傳輸系統的聯合導頻和迭代譯碼載波同步[J]. 西安電子科技大學學報, 2014, 41(1): 29-36.
Sun Jin-hua, Wang Xue-mei, and Wu Xiao-jun. Joint pilot and iterative decoding carrier synchronization for short burst transmission system[J]., 2014, 41(1): 29-36.
[14] Godtmann S, Hadaschik N, Steinert W,.. A concept for data-aided carrier frequency estimation at low signal-to-noise ratio[C]. Proceedings of IEEE International Conference on Communications,ICC’08, Beijing, China, 2008: 463-467.
[15] Godtmann S, Pollok A, Hodaschik N,.. On the influence of pilot symbol and data symbol positioning on turbo synchronization[C]. IEEE 65th Vehicular Technology Conference, VTC2007,Dublin, Ireland, 2007: 1723-1726.
[16] Godtmann S, Hadaschik N, Steinert W,.. Coarse and turbo synchronization: a case-study for DVB-RCS[C]. NEWCOM-ACORN Workshop, Vienna, Austria, 2006: 1-5.
孫錦華: 女,1979年生,博士,副教授,研究方向為無線通信數據傳輸與突發信號處理.
王雪梅: 女,1987年生,碩士生,研究方向為載波同步算法.
吳小鈞: 男,1972年生,博士,講師,研究方向為計算機通信.
Pilot Design of Data-aided Carrier Synchronization for Short Burst Transmission
Sun Jin-hua①Wang Xue-mei①Wu Xiao-jun②
①(,,’710071,)②(,’,’710064,)
For short burst communication systems, the position and the number of pilot symbols have a great impact on frequency estimation accuracy and estimation range in time-domain correlation frequency estimation algorithm. So a frequency estimation algorithm with a high frequency estimation accuracy based on the summation of the entire cross correlation is proposed, and its theoretical estimation variance is derived. By analyzing the impact of the pilot position on estimation accuracy and estimation range, a scheme of Variable-spaced Preamble Middle (VDPM) frame structure is proposed which can choose the distance of pilot blocks according to estimation accuracy and estimation range. Theoretical analysis and simulation results show that the frame structure can satisfy the requirements of frequency estimation range and estimation accuracy, and the estimation algorithm can achieve high estimation accuracy with a few pilot symbols, hence it is suit for short burst communication system.
Short burst communication; Pilot symbol; Carrier synchronization; Frame structure
TN927
A
1009-5896(2014)03-0669-07
10.3724/SP.J.1146.2013.00509
2013-04-16收到,2013-11-08改回
國家自然科學基金(60902039, 61271175),中央高?;究蒲袠I務費專項資金(K50511010014, K5051201043, CHD2011JC088)和長安大學基礎研究支持計劃資助課題
孫錦華 jhsun@xidian.edu.cn