梁國(guó)龍 韓 博
?
基于互素對(duì)稱陣的近場(chǎng)源定位
梁國(guó)龍 韓 博*
(哈爾濱工程大學(xué)水聲技術(shù)重點(diǎn)實(shí)驗(yàn)室 哈爾濱 150001)
針對(duì)近場(chǎng)源定位中存在的孔徑損失問題,該文提出了一種新的近場(chǎng)源定位算法。該算法采用互素對(duì)稱陣列,使得陣元間距不必限制于1/4信號(hào)波長(zhǎng)。首先構(gòu)造一個(gè)特殊的四階累積量矩陣,進(jìn)而采用MUSIC算法估計(jì)信源方位角,然后在每個(gè)估計(jì)方向上搜索距離。該算法將近場(chǎng)源2維定位問題轉(zhuǎn)化為多次1維搜索,且參數(shù)自動(dòng)配對(duì)。互素對(duì)稱陣的使用有效地?cái)U(kuò)展了陣列孔徑,提高了空間分辨概率和參數(shù)估計(jì)性能。計(jì)算機(jī)仿真驗(yàn)證了該算法的有效性。
信號(hào)處理;源定位;近場(chǎng);陣列處理;互素對(duì)稱陣;累積量

陣列孔徑是影響信源方位角分辨率和定位精度的重要因素之一。在陣元數(shù)目有限的情況下,稀疏布陣可以增加陣列孔徑,為避免稀疏陣列帶來的空間模糊問題,文獻(xiàn)[14-16]給出了稀疏陣列的設(shè)計(jì)方法及其在遠(yuǎn)場(chǎng)條件下的應(yīng)用。本文根據(jù)近場(chǎng)條件,將互素陣[15]擴(kuò)展,采用互素對(duì)稱陣模型,提出一種新的近場(chǎng)源定位算法。首先構(gòu)造了一個(gè)特殊的四階累積量矩陣,利用MUSIC算法估計(jì)信源方向角。然后根據(jù)方位角估計(jì)值搜索信源距離參數(shù)。該算法將2維搜索問題轉(zhuǎn)化為多次1維搜索,無需參數(shù)配對(duì),采用互素對(duì)稱陣提高了DOA空間分辨概率和定位性能。


圖1 陣列幾何模型




陣列接收信號(hào)表示為

式中





不失一般性,本文做如下假設(shè):
(1)信號(hào)為零均值、非高斯的窄帶平穩(wěn)隨機(jī)過程,且具有非零峰度,信號(hào)之間互不相關(guān);
(2)各陣元接收的噪聲為零均值的高斯白噪聲,并與信號(hào)相互獨(dú)立;















陣列數(shù)據(jù)協(xié)方差矩陣如下:





那么,式(29)右邊部分需滿足:



從圖2和圖3可以看出,本文算法成功分辨兩個(gè)目標(biāo)的概率比文獻(xiàn)[12]和文獻(xiàn)[13]中算法的分辨概率高。這是因?yàn)樵撍惴ú捎昧嘶ニ貙?duì)稱陣列,在陣元數(shù)目相同的條件下,有效擴(kuò)展了陣列孔徑。
本文以互素對(duì)稱陣為陣型依托,提出了一種近場(chǎng)源定位算法。該算法通過合理選擇不同陣元數(shù)據(jù),構(gòu)造一個(gè)特殊的四階累積量矩陣,使得該矩陣僅與信源方位角有關(guān);進(jìn)而利用MUSIC算法進(jìn)行方位角估計(jì),然后在每個(gè)方位角估計(jì)值方向上搜索信源距離參數(shù)。互素對(duì)稱陣的采用,使得在陣元數(shù)一定的條件下,大大擴(kuò)展了陣列孔徑。仿真結(jié)果表明,本文算法提高了信源DOA分辨概率和定位精度。

圖2 分辨概率隨信噪比變化情況

圖3 分辨概率隨快拍數(shù)變化情況

圖4 方位角均方誤差隨信噪比變化情況

圖5 距離均方誤差隨信噪比變化情況

圖6 方位角均方誤差隨快拍數(shù)變化情況

圖7 距離均方誤差隨快拍數(shù)變化情況
[1] McCloud M L and Scharf L L. A new subspace identification algorithm for high-resolution DOA estimation[J]., 2002, 50(10): 1382-1390.
[2] 李鵬飛, 鐘子發(fā), 張旻. 未知信源數(shù)目的DOA估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2012, 34(3): 576-581.
Li Peng-fei, Zhong Zi-fa, and Zhang Min. Direction of arrival estimation methods without sources number[J].&, 2012, 34(3): 576-581.
[3] Hu N, Ye Z F, Xu X,.. DOA estimation for sparse array via sparse signal reconstruction[J]., 2013, 49(2): 760-773.
[4] Huang Y D and Barkat M. Near-field mutiple sources localization by passive sensor array[J]., 1991, 39(7): 968-975.
[5] Yuen N and Friedlander B. Performance analysis of higher order ESPRIT for localization of near-field sources[J]., 1998, 46(3): 709-719.
[6] 陳建峰, 張賢達(dá), 吳云韜. 近場(chǎng)源距離、頻率及到達(dá)角聯(lián)合估計(jì)算法[J]. 電子學(xué)報(bào),2004, 32(5): 803-806.
Chen Jian-feng, Zhang Xian-da, and Wu Yun-tao. An algorithm for jointly estimating range, DOA and frequency of near field source[J]., 2004, 32(5): 803-806.
[7] 徐元欣, 王安國(guó), 聶仲爾. 基于四階累積量的近遠(yuǎn)場(chǎng)源多參數(shù)聯(lián)合估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2011, 33(6): 1379-1384.
Xu Yuan-xin, Wang An-guo, and Nie Zhong-er. Joint multi- parameters estimation of near-field and far-field sources based on the fourth order cumulant[J].&, 2011, 33(6): 1379-1384.
[8] 王波, 王樹勛. 一種基于二階統(tǒng)計(jì)量的近場(chǎng)源三維參數(shù)估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2006, 28(1): 45-49.
Wang Bo and Wang Shu-xun. A three-dimensional parameter estimation method of near field sources based on second statistics[J].&, 2006, 28(1): 45-49.
[9] Zhi W and Chia M Y. Near-field source localization via symmetric subarrays[J]., 2007, 14(6): 409-412.
[10] 劉亮, 陶建武, 黃家才. 基于稀疏對(duì)稱陣列的近場(chǎng)源定位[J]. 電子學(xué)報(bào), 2009, 37(6): 1307-1312.
Liu Liang, Tao Jian-wu, and Huang Jia-cai. Near-field source localization based on sparse symmetric array[J]., 2009, 37(6): 1307-1312.
[11] 蔣佳佳, 段發(fā)階, 陳勁, 等. 一種近場(chǎng)和遠(yuǎn)場(chǎng)混合信號(hào)源的分類和定位算法[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 41(4): 46-50.
Jiang Jia-jia, Duan Fa-jie, Chen Jin,.. Algorithm to classify and locate near-field and far-field mixed sources[J].(), 2013, 41(4): 46-50.
[12] He J, Swamy M N, and Ahmad M O. Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources[J]., 2012, 60(4): 2066-2070.
[13] Liang J and Liu D. Passive localization of near-field sources using cumulant[J]., 2009, 9(8): 953-960.
[14] Pal P and Vaidyanathan P P. Nested arrays: a novel approach to array processing with enhanced degrees of freedom[J]., 2010, 58(8): 4167-4181.
[15] Vaidyanathan P P and Pal P. Sparse sensing with co-prime samplers and arrays[J]., 2011, 59(2): 573-586.
[16] Pal P and Vaidyanathan P P. Multiple level nested array: an efficient geometry for 2th order cumulant based array processing[J]., 2012, 60(3): 1253-1269.
梁國(guó)龍: 男,1964年生,教授,研究方向?yàn)樗暥ㄎ慌c導(dǎo)航、水聲對(duì)抗、水聲目標(biāo)探測(cè)等.
韓 博: 男,1986年生,博士生,研究方向?yàn)殛嚵行盘?hào)處理、水下定位與導(dǎo)航等.
Near-field Sources Localization Based on Co-prime Symmetric Array
Liang Guo-long Han Bo
(,,150001,)
For the issue of aperture loss appears when localizing near-field sources, a novel near-field source localization algorithm is presented. The algorithm is based on the co-prime symmetric array, thus the intersensor spacing need not be limited to quarter-wavelength. First, a special fourth-order cumulant matrix is constructed to estimate the azimuth angles of sources by the MUSIC algorithm. Second, the range parameters of sources can be obtained by searching the spectral peak with each estimated bearing angle. The algorithm transforms the two-dimensional localization issue into several one-dimensional searching issue, and the parameters are automatically paired. The array aperture is extended by using co-prime symmetric, and the algorithm improves the spatial resolution and parameters estimated performance. Simulation results verify the effectiveness of the proposed algorithm.
Signal processing; Sources localization; Near-field; Array processing; Co-prime symmetric array; Cumulant
TB566
A
1009-5896(2014)01-0135-05
10.3724/SP.J.1146.2013.00756
2013-05-27收到,2013-10-25改回
國(guó)家自然科學(xué)基金(51279043, 51209059),水聲技術(shù)國(guó)家級(jí)重點(diǎn)實(shí)驗(yàn)室基金(9140C200203110C2003)和黑龍江省普通高等學(xué)校青年學(xué)術(shù)骨干支持計(jì)劃(1253G019)資助課題
韓博 hanbo710@126.com