方效林等
摘要:數(shù)據(jù)收集問(wèn)題研究外界用戶如何通過(guò)無(wú)線傳感器網(wǎng)絡(luò)從監(jiān)控區(qū)域收集感知數(shù)據(jù)。傳感器節(jié)點(diǎn)通過(guò)自組織方式構(gòu)成網(wǎng)絡(luò),數(shù)據(jù)收集問(wèn)題就是尋找高效可靠的方式將感知數(shù)據(jù)通過(guò)多跳的方式傳輸給用戶進(jìn)行分析和處理。近幾年對(duì)數(shù)據(jù)收集問(wèn)題的研究非常廣泛,主要包含減少數(shù)據(jù)收集過(guò)程中的數(shù)據(jù)傳輸量、數(shù)據(jù)收集協(xié)議和大規(guī)模網(wǎng)絡(luò)數(shù)據(jù)收集調(diào)度等問(wèn)題。從以上幾方面對(duì)數(shù)據(jù)收集問(wèn)題進(jìn)行綜述。
關(guān)鍵詞:無(wú)線傳感器網(wǎng)絡(luò); 數(shù)據(jù)收集; 路由協(xié)議; 調(diào)度
中圖分類號(hào):TP39102 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):2095-2163(2014)01-0001-06
0引言
無(wú)線傳感器網(wǎng)絡(luò)集成了微型計(jì)算機(jī)技術(shù),分布式計(jì)算技術(shù)和現(xiàn)代網(wǎng)絡(luò)技術(shù)等[1-3],已經(jīng)成為當(dāng)今實(shí)具高效影響力的重要技術(shù)。數(shù)據(jù)收集是無(wú)線傳感器網(wǎng)絡(luò)中的重要研究問(wèn)題之一。其基本原理是通過(guò)傳感器節(jié)點(diǎn)的自組織而形成網(wǎng)絡(luò),將采集到的數(shù)據(jù)通過(guò)多跳的形式發(fā)送到基站進(jìn)行相應(yīng)處理的實(shí)現(xiàn)過(guò)程。
無(wú)線傳感器網(wǎng)絡(luò),通常包括傳感器,匯聚節(jié)點(diǎn)和基站。傳感器節(jié)點(diǎn)數(shù)據(jù)經(jīng)過(guò)多個(gè)節(jié)點(diǎn)后最終到達(dá)Sink節(jié)點(diǎn),其后再通過(guò)Internet網(wǎng)絡(luò)或衛(wèi)星網(wǎng)絡(luò)傳輸給用戶。用戶處理數(shù)據(jù)后,通過(guò)sink節(jié)點(diǎn)向網(wǎng)絡(luò)發(fā)送控制命令以及調(diào)度命令。傳感器節(jié)點(diǎn)由電池供電,其節(jié)點(diǎn)能量有限[4]。無(wú)線傳感器網(wǎng)絡(luò)具有動(dòng)態(tài)性強(qiáng)、監(jiān)測(cè)數(shù)據(jù)量大、但其通信能力、供電能力和計(jì)算能力均屬有限等特點(diǎn)。現(xiàn)實(shí)中的無(wú)線傳感器網(wǎng)絡(luò)主要應(yīng)用在工業(yè)控制[5]、智能家居[6]、醫(yī)療護(hù)理[7]、農(nóng)業(yè)和環(huán)境監(jiān)測(cè)[8]以及目標(biāo)跟蹤[9]和物流管理[10]等方面。
在傳感器網(wǎng)絡(luò)的很多應(yīng)用中,數(shù)據(jù)收集需要傳輸大量的感知數(shù)據(jù)。大量感知數(shù)據(jù)在網(wǎng)絡(luò)中傳輸,會(huì)產(chǎn)生大量通信開銷。通信開銷是傳感器網(wǎng)絡(luò)最重要的能量消耗方式。據(jù)統(tǒng)計(jì),數(shù)據(jù)傳輸消耗的能量占整個(gè)傳感器網(wǎng)絡(luò)能量消耗的80%。減少數(shù)據(jù)傳輸量,即能夠降低能量開銷,從而延長(zhǎng)網(wǎng)絡(luò)生命周期。數(shù)據(jù)收集算法中,有多種方法可以減少數(shù)據(jù)傳輸量。例如,基于采樣的數(shù)據(jù)收集方法,基于數(shù)據(jù)壓縮的數(shù)據(jù)收集方法以及基于數(shù)據(jù)共享的數(shù)據(jù)收集方法。
傳感器網(wǎng)絡(luò)數(shù)據(jù)收集問(wèn)題的覆蓋范圍非常廣泛,從數(shù)據(jù)收集協(xié)議、到多信道調(diào)度,從靜態(tài)網(wǎng)絡(luò)、到可移動(dòng)網(wǎng)絡(luò)數(shù)據(jù)收集等,都存在著大量的研究問(wèn)題。本文將從如何減少數(shù)據(jù)收集過(guò)程中的數(shù)據(jù)傳輸量、數(shù)據(jù)收集協(xié)議和大規(guī)模網(wǎng)絡(luò)數(shù)據(jù)收集調(diào)度等幾方面對(duì)數(shù)據(jù)收集問(wèn)題進(jìn)行系統(tǒng)分析和專題介紹。
1基于采樣的數(shù)據(jù)收集方法
文獻(xiàn)[11]提出一種大規(guī)模傳感器網(wǎng)絡(luò)中近似K-中位數(shù)計(jì)算方法。K-中位數(shù)是指,給定一個(gè)集合S,在集合S中找出第K小的值,n為S集合的大小。文獻(xiàn)[12]提出基于采樣的( ε,δ)-近似聚集算法。通過(guò)采樣,可使得到的結(jié)果誤差在ε界限內(nèi)的概率不大于δ。文獻(xiàn)[13]則在對(duì)一小部分傳感器節(jié)點(diǎn)數(shù)據(jù)采樣至融合中心后,再估計(jì)感知環(huán)境,并指導(dǎo)網(wǎng)絡(luò)資源分配。具體地講,融合中心根據(jù)估計(jì)的感知環(huán)境情況,有選擇地激活某些節(jié)點(diǎn),從而滿足一定的誤差界限。這種動(dòng)態(tài)采樣方法可以有效節(jié)省能量開銷。文獻(xiàn)[14]提出一種在線算法,在給定能量開銷上界的情況下最小化近似比誤差。該種算法是基于區(qū)域采樣,將網(wǎng)絡(luò)劃分為多個(gè)不重疊的區(qū)域,并通過(guò)計(jì)算近似聚集結(jié)果來(lái)滿足事先設(shè)定的能量預(yù)算。文獻(xiàn)[15]采用基于卡爾曼濾波的估計(jì)方法來(lái)自動(dòng)動(dòng)態(tài)地調(diào)整采樣速率,從而降低傳輸量,提高估計(jì)精度。文獻(xiàn)[16]提出一種近似隨機(jī)的采樣方法。這種方法只采樣與網(wǎng)絡(luò)規(guī)模成比例的部分節(jié)點(diǎn),由此而達(dá)到接近隨機(jī)采樣方法的效果及精度。
2基于數(shù)據(jù)聚集的數(shù)據(jù)收集方法
文獻(xiàn)[17]研究了數(shù)據(jù)聚集操作對(duì)于網(wǎng)絡(luò)性能的影響。文獻(xiàn)[18]總結(jié)了數(shù)據(jù)壓縮的幾種方式。其中,最為常見(jiàn)的是通過(guò)聚集的方式盡量更少地傳輸數(shù)據(jù)。聚集操作只是在根據(jù)特定查詢的應(yīng)用中較為有效,在一般的數(shù)據(jù)收集方法中卻并不適用。文獻(xiàn)[19]研究了傳感器網(wǎng)絡(luò)數(shù)據(jù)空間相關(guān)性對(duì)數(shù)據(jù)壓縮的影響。文獻(xiàn)[20]又提出一種分布式的基于數(shù)據(jù)空間相關(guān)性的數(shù)據(jù)壓縮方法。文獻(xiàn)[21]則研究了無(wú)結(jié)構(gòu)的數(shù)據(jù)聚集方法。通常,數(shù)據(jù)聚集方法都基于樹狀或其它固定結(jié)構(gòu),該文提出了兩種無(wú)結(jié)構(gòu)的數(shù)據(jù)聚集方法。此外,文獻(xiàn)[22]研究稀疏網(wǎng)絡(luò)中的數(shù)據(jù)聚集方法,而文獻(xiàn)[23]研究了傳感器網(wǎng)絡(luò)數(shù)據(jù)聚集方法中的安全問(wèn)題。
無(wú)線傳感器網(wǎng)絡(luò)中,有關(guān)數(shù)據(jù)聚集操作已經(jīng)產(chǎn)生了許多的研究成果[24-29]。聚集操作一般包括求最大值、最小值、和、均值、中值以及計(jì)數(shù)等。計(jì)數(shù)操作的方法包括基于采樣的方法[30-31]、基于壓縮感知的方法[32]、基于蒙特卡羅的方法[33]以及基于統(tǒng)計(jì)分析的方法[34-35]等。而根據(jù)不同的應(yīng)用場(chǎng)景,對(duì)象檢測(cè)技術(shù)也將有所不同。聚集算法則可分為集中式算法和分布式算法。集中式算法多是需要得到全網(wǎng)的信息,其通信開銷量一般并不適于傳感器網(wǎng)絡(luò)應(yīng)用中。人們更大程度上用的是分布式聚集算法。分布式聚集算法包括基于分簇的算法、基于多路徑的算法以及基于聚集樹的算法[36]。第1期方效林,等:無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)收集問(wèn)題綜述智能計(jì)算機(jī)與應(yīng)用第4卷
3基于多任務(wù)數(shù)據(jù)共享的數(shù)據(jù)收集方法
多應(yīng)用共享傳感器網(wǎng)絡(luò)可以提高網(wǎng)絡(luò)的利用率[37-40]。但是多任務(wù)共享一個(gè)傳感器網(wǎng)絡(luò)卻會(huì)增加網(wǎng)絡(luò)的計(jì)算和通信開銷,從而降低網(wǎng)絡(luò)的生命周期。傳輸盡量最少的數(shù)據(jù)滿足多應(yīng)用的查詢要求是一種降低通信開銷的有效方法。文獻(xiàn)[41]研究多任務(wù)數(shù)據(jù)共享問(wèn)題。但在其所研究的問(wèn)題中,每個(gè)任務(wù)只是需要在各自的周期內(nèi)采集一個(gè)數(shù)據(jù)。
無(wú)線傳感器網(wǎng)絡(luò)中數(shù)據(jù)共享問(wèn)題的研究目標(biāo)是在多任務(wù)共享的傳感器網(wǎng)絡(luò)中,采集最少的數(shù)據(jù),從而滿足所有任務(wù)的需求。傳感器網(wǎng)絡(luò)中查詢優(yōu)化問(wèn)題也需要收集盡量最少的數(shù)據(jù)滿足各個(gè)查詢的要求[42-43]。但其中需要解決的問(wèn)題通常是如何在網(wǎng)內(nèi)進(jìn)行分布式調(diào)度,再通過(guò)數(shù)據(jù)聚集來(lái)減少數(shù)據(jù)量。
數(shù)據(jù)庫(kù)系統(tǒng)中涉及到的多查詢優(yōu)化問(wèn)題也有需要減少數(shù)據(jù)量的情況[44-45]。但是這類問(wèn)題更多的是強(qiáng)調(diào)如何最大化公共表達(dá)式,再通過(guò)限制查詢量來(lái)減少數(shù)據(jù)量。多查詢優(yōu)化問(wèn)題可通過(guò)尋找SQL公共表達(dá)式減少不必要的重復(fù)子查詢。
Krishnamurthy 等人研究數(shù)據(jù)流系統(tǒng)中聚集查詢的數(shù)據(jù)共享問(wèn)題[46]。研究者們主要解決處理諸如 min、max、sum 以及 count 等聚集查詢。在其所研究的問(wèn)題中,數(shù)據(jù)流至少需要被掃描一次,并分成多個(gè)碎片。只有被多個(gè)查詢重疊覆蓋的碎片才可以得到共享。
4數(shù)據(jù)收集過(guò)程中路由協(xié)議問(wèn)題的研究
無(wú)線傳感器網(wǎng)絡(luò)(Wireless Sensor Networks)通過(guò)大量部署在監(jiān)測(cè)區(qū)域內(nèi)的傳感器節(jié)點(diǎn)采集網(wǎng)絡(luò)覆蓋區(qū)域內(nèi)感知對(duì)象的信息,并通過(guò)多跳的無(wú)線通信方式將收集處理后的信息提供給終端用戶。路由算法是數(shù)據(jù)收集的基本問(wèn)題,所有數(shù)據(jù)都需要通過(guò)路由方法發(fā)送至基站進(jìn)行相關(guān)處理。傳感器網(wǎng)絡(luò)中具有多種路由協(xié)議,包括 Gossiping 協(xié)議[47]、SPIN 協(xié)議[48]、Directed Diusion協(xié)議[49]、Rumor 協(xié)議[50]、LEACH協(xié)議[51]等等。在數(shù)據(jù)收集過(guò)程中,使用較多的路由協(xié)議作為樹狀路由和地理路由等。而在無(wú)線傳感器網(wǎng)絡(luò)中,地理路由協(xié)議則使得數(shù)據(jù)包可以通過(guò)多跳無(wú)線傳輸?shù)竭_(dá)指定地理位置附近的節(jié)點(diǎn),因而具備了廣泛的應(yīng)用前景。目前,已經(jīng)實(shí)現(xiàn)了很多關(guān)于地理路由算法的研究工作,其基本過(guò)程大體一致,都是在貪心模式失敗時(shí)轉(zhuǎn)入周邊模式。
5數(shù)據(jù)收集過(guò)程中調(diào)度問(wèn)題的研究
在傳感器網(wǎng)絡(luò)的眾多應(yīng)用中,數(shù)據(jù)收集需要傳輸大量的感知數(shù)據(jù)。大量感知數(shù)據(jù)通過(guò)路由方法轉(zhuǎn)發(fā)給 sink 節(jié)點(diǎn),必然引起數(shù)據(jù)沖突。數(shù)據(jù)沖突不但會(huì)導(dǎo)致重傳,從而降低吞吐量,而且還會(huì)導(dǎo)致數(shù)據(jù)丟失。TDMA方法是一種能夠在高負(fù)載網(wǎng)絡(luò)中避免沖突,提高吞吐量的有效方法[52-54]。現(xiàn)今已經(jīng)涌現(xiàn)了許多關(guān)于TDMA的工作,這些工作的目的都在于如何減少TDMA時(shí)間槽數(shù)或者設(shè)計(jì)分布式TDMA算法[55-57]。但是這些研究工作卻都是針對(duì)一般數(shù)據(jù)通信而設(shè)計(jì)的TDMA算法。文獻(xiàn)[58]研究基于TDMA的數(shù)據(jù)收集問(wèn)題。給定一棵路由樹及其對(duì)應(yīng)的干擾圖,每個(gè)節(jié)點(diǎn)都要向基站發(fā)送數(shù)據(jù),目標(biāo)是找到最小的時(shí)間槽數(shù),使得所有節(jié)點(diǎn)數(shù)據(jù)都能發(fā)送到基站。文獻(xiàn) [58] 證明了這個(gè)問(wèn)題的復(fù)雜性,并給出兩個(gè)算法。一個(gè)是基于節(jié)點(diǎn)的調(diào)度算法,另一個(gè)是基于分層的調(diào)度算法。該文獻(xiàn)還對(duì)提出的算法進(jìn)行了分析,但并未給出近似比。此外,減少數(shù)據(jù)沖突,提高網(wǎng)絡(luò)吞吐量的另一個(gè)有效方法則是采用多信道技術(shù)。多信道通信中,不同的信道將互不干擾。通過(guò)多信道機(jī)制,盡可能地使得多個(gè)鏈路在同一時(shí)間進(jìn)行通信,從而提高網(wǎng)絡(luò)的吞吐量。現(xiàn)在已經(jīng)獲得了大量多信道調(diào)度問(wèn)題的研究工作成果。文獻(xiàn)[59-61]研究聚集操作的多信道調(diào)度問(wèn)題。文獻(xiàn)[62-64]探討了多信道MAC協(xié)議。文獻(xiàn)[65] 實(shí)現(xiàn)了在網(wǎng)絡(luò)中建立多棵樹,每棵樹使用不同的信道,以此來(lái)提高網(wǎng)絡(luò)的吞吐量。文獻(xiàn)[66]則研究了多信道快速數(shù)據(jù)收集過(guò)程的吞吐量與延時(shí)的權(quán)衡問(wèn)題。
已有的多信道研究中都選擇信道間頻距足夠大的信道,以保證信道間正交無(wú)干擾。但是這種選擇卻會(huì)導(dǎo)致可利用的信道數(shù)減少。有研究表明,適當(dāng)減小頻距,增加可用的信道數(shù),能夠提高網(wǎng)絡(luò)的吞吐量。在數(shù)據(jù)收集過(guò)程中,一般均以樹狀路由進(jìn)行數(shù)據(jù)傳輸。研究中需要考慮如何進(jìn)行 TDMA 以及多信道調(diào)度,使得網(wǎng)絡(luò)中所有節(jié)點(diǎn)的數(shù)據(jù)能夠以最短的時(shí)間到達(dá)樹根的問(wèn)題。同時(shí),還需考慮信道間發(fā)生干擾時(shí),如何使得因信道間干擾而造成的數(shù)據(jù)丟失最少的問(wèn)題。
已有大量的工作表明多信道復(fù)用可以極大提高網(wǎng)絡(luò)的吞吐量[67-69]。近年來(lái)已開發(fā)了很多的多信道傳輸協(xié)議,例如 MCMAC[70],TMMAC[71],MMSN[63]等。然而,這些工作使得為網(wǎng)絡(luò)中每一條鏈路分配時(shí)間槽,實(shí)現(xiàn)彼此之間互不干擾成為可能。其實(shí)針對(duì)數(shù)據(jù)聚集網(wǎng)絡(luò)中的多信道調(diào)度問(wèn)題,只需要對(duì)所構(gòu)建路由樹上的鏈路,而不是網(wǎng)內(nèi)所有鏈路進(jìn)行時(shí)間槽分配即可實(shí)現(xiàn)與完成。
全網(wǎng)數(shù)據(jù)收集與數(shù)據(jù)聚集問(wèn)題表現(xiàn)了一定的相關(guān)性[72],但是并不完全相同。全網(wǎng)數(shù)據(jù)收集算法的目標(biāo)是收集網(wǎng)內(nèi)所有節(jié)點(diǎn)的原始數(shù)據(jù),而數(shù)據(jù)聚集算法卻是收集聚集結(jié)果。最小化延時(shí)是數(shù)據(jù)收集問(wèn)題的一個(gè)研究?jī)?nèi)容[102-103]。Gandham 等人提出一調(diào)度算法[73],算法實(shí)現(xiàn)需要 3N 個(gè)時(shí)間槽。其中,N 為節(jié)點(diǎn)個(gè)數(shù)。Yu 等人提出另一調(diào)度算法[74],實(shí)現(xiàn)需要24D+ 6Δ+ 16個(gè)時(shí)間槽。其中,D是網(wǎng)絡(luò)的直徑,Δ是最大節(jié)點(diǎn)度數(shù)。這些工作的目標(biāo)都是減少延時(shí),使得數(shù)據(jù)最早發(fā)送到基站。Wu 等人又提出一多信道數(shù)據(jù)收集協(xié)議 TMCP (Tree-based Multi-Channel Protocol)[65]。該協(xié)議將網(wǎng)絡(luò)劃分成多個(gè)子樹,樹間使用不同的信道,而樹內(nèi)使用相同的信道。其目標(biāo)是減少樹內(nèi)的干擾。
文獻(xiàn)[60]中,算法首先建立一棵路由樹;其次為每個(gè)節(jié)點(diǎn)分配信道,使其下的所有孩子節(jié)點(diǎn)都以這個(gè)信道發(fā)送數(shù)據(jù);為樹內(nèi)鏈路分配時(shí)間槽,使得彼此之間互不干擾。在分配信道過(guò)程中,算法優(yōu)先分配信道給那些干擾最嚴(yán)重的節(jié)點(diǎn),這一分配方式是集中式的,并不適合在傳感器網(wǎng)絡(luò)中應(yīng)用。文獻(xiàn)[60]中,算法的上界為 maxΔ2 + 1,其中Δ2是網(wǎng)絡(luò)形成的圖中2跳內(nèi)鄰居節(jié)點(diǎn)的個(gè)數(shù)。令Δ(G)為圖的度,則文獻(xiàn)[60]中的算法上界為O(Δ(G)2)。
文獻(xiàn)[66,71]針對(duì) UDG 網(wǎng)絡(luò)和非 UDG 網(wǎng)絡(luò)提出兩種調(diào)度算法。算法中,針對(duì) UDG 網(wǎng)絡(luò)所提出的算法上界為 8μαΔ(T)。其中,μα是與方格大小有關(guān)的函數(shù),Δ (T)是所構(gòu)建路由樹的度。針對(duì)非UDG網(wǎng)絡(luò)所提出的算法上界為O(Δ(T) log n)。其中,(T)是所構(gòu)建路由樹的度,n是網(wǎng)絡(luò)中的節(jié)點(diǎn)個(gè)數(shù)。這兩種算法都是集中式的。
多信道調(diào)度的研究工作還包括多電臺(tái)多信道調(diào)度的研究[75-77]。多電臺(tái)多信道網(wǎng)絡(luò)中每個(gè)節(jié)點(diǎn)包含多個(gè)收發(fā)裝置,每個(gè)收發(fā)裝置可以獨(dú)立地進(jìn)行數(shù)據(jù)收發(fā)工作,如此即可進(jìn)一步提高數(shù)據(jù)傳輸能力。
6結(jié)束語(yǔ)
用戶進(jìn)行區(qū)域監(jiān)測(cè)、事件發(fā)現(xiàn)、事件挖掘以及事件預(yù)測(cè)等操作,都需要將網(wǎng)絡(luò)中的傳感器數(shù)據(jù)收集到基站進(jìn)行處理,因此數(shù)據(jù)收集問(wèn)題成為傳感器網(wǎng)絡(luò)中的焦點(diǎn)研究?jī)?nèi)容之一。本文從如何減少數(shù)據(jù)收集過(guò)程的數(shù)據(jù)量、如何減少數(shù)據(jù)聚集過(guò)程的數(shù)據(jù)量以及數(shù)據(jù)收集過(guò)程中的路由協(xié)議和調(diào)度問(wèn)題幾方面對(duì)數(shù)據(jù)收集問(wèn)題進(jìn)行了闡述,介紹了當(dāng)前數(shù)據(jù)收集問(wèn)題的研究工作,并針對(duì)相關(guān)研究工作分別進(jìn)行了分析和介紹。
參考文獻(xiàn):
[1]李建中,李金寶,石勝飛. 傳感器網(wǎng)絡(luò)及其數(shù)據(jù)管理的概念、問(wèn)題與進(jìn)展[J].軟件學(xué)報(bào), 2003, 14(10):1717–1727.
[2]孫利民, 李建中, 陳渝. 無(wú)線傳感器網(wǎng)絡(luò)[M]. 北京: 清華大學(xué)出版社, 2005.
[3]AKYILDIZ I, SU W, SANKARASUBRAMANIAM Y, et al. A survey on sensor networks[J].IEEE Communications Magazine, 2002, 40(8):102–114.
[4]ESTRIN D, GOVINDAN R, HEIDMANN J, et al. Next century challenges: scalablecoordination in sensor networks[C]//Proceedings of the 5th annual ACM/IEEE In-Ternational Conference on Mobile Computing and Networking. 1999. New York,NY, USA: ACM, MobiCom 99.
[5]HILL J L, CULLER D E. Mica: A wireless platform for deeply embedded net-works[J]. IEEE Micro, 2002, 22(6):12–24.
[6]SHNAYDER V, CHEN B R, LORINCZ K, et al. Sensor networks for medical care[C]//Proceedings of the 3rd international conference on Embedded networkedsensor systems. New York, NY, USA: ACM, SenSys 05,2005.
[7]ROSS P. Managing care through the air [remote health monitoring][J]. IEEE Spec-trum, 2004, 41(12):26–31.
[8]WANG N, ZHANG N, WANG M. Wireless sensors in agriculture and food industry—Recent development and future perspective[J]. Computers and Electronics in Agriculture, 2006, 50(1):1 – 14.
[9]DURISIC M, TAFA Z, DIMIC G, et al. A survey of military applications of wirelesssensor networks[C]//Embedded Computing (MECO), 2012Mediterranean Conference on. .[S.l.]: [s.n.] , 2012:196–199.
[10]Draft Amendment to IEEE Standard for Information technology-Telecommunications and information exchange between systems-PART15.4:Wireless Medium Access Control (MAC) and Physical Layer (PHY)Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs): Amendment to add alternate PHY (Amendment of IEEE Std 802.15.4)[J]. IEEEStd P802.15.4a/D5, 2006.
[11]HUANG Z, WANG L, YI K, et al. Sampling based algorithms for quantile computation in sensor networks[C]//Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. New York, NY, USA: ACM, SIGMOD11, 2011.
[12]CHENG S, LI J, REN Q, et al. Bernoulli sampling based (ε;, δ;)-approximate aggregation in large-scale sensor networks[C]//Proceedings of the 29th Conference on Information Communications. Piscataway, NJ, USA:IEEE Press, INFOCOM10, 2010.
[13]WILLETT R, MARTIN A, NOWAK R. Backcasting: adaptive sampling for sensor networks[C]//Proceedings of the 3rd international symposium on Information processing in sensor networks. New York, NY, USA: ACM, IPSN 04, 2004.
[14]LIN S, ARAI B, GUNOPULOS D, et al. Region sampling: continuous adaptive sampling on sensor networks[C]//Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on. .[S.l.]: [s.n.] , 2008:794–803.
[15]JAIN A, CHANG E Y. Adaptive sampling for sensor networks[C]//Proceeedings of the 1st international workshop on Data management for sensor networks: inconjunction with VLDB 2004. 2004. New York, NY, USA: ACM, DMSN 04.
[16]BASH B A, BYERS J W, CONSIDINE J. Approximately uniform random sampling in sensor networks[C]//Proceeedings of the 1st international workshop on Data management for sensor networks: in conjunction with VLDB 2004. New York,NY, USA: ACM, DMSN 04, 2004.
[17]KRISHNAMACHARI B, ESTRIN D, WICKER S B. The impact of data aggregation in wireless sensor networks[C]//Proceedings of the 22nd International Conference on Distributed Computing Systems. Washington, DC, USA: IEEE Computer Society, ICDCSW 02, 2002.
[18]KIMURA N, LATIATI S. A survey on data compression in wireless sensor networks[C]//Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC05) - Volume II - Volume 02. Washington, DC, USA: IEEE Computer Society, ITCC 05, 2005.
[19]PATTEM S, KRISHNAMACHARI B, GOVINDAN R. The impact of spatial correlation on routing with compression in wireless sensor networks[J]. ACM Trans. Sen. Netw.,2008, 4(4):1–24, 33.
[20]PRADHAN S, KUSUMA J, RAMCHANDRAN K. Distributed compression in a dense microsensor network[J]. IEEE Signal Processing Magazine, 2002, 19(2):51–60.
[21]FAN K W, LIU S, SINHA P. Structure-Free Data Aggregation in Sensor Networks[J].Mobile Computing, IEEE Transactions on, 2007, 6(8):929–942.
[22]GAO J, GUIBAS L, MILOSAVLJEVIC N, et al. Sparse data aggregation in sensor networks[C]//Proceedings of the 6th international conference on Information processing in sensor networks. New York, NY, USA: ACM, IPSN 07, 2007.
[23]OZDEMIR S, XIAO Y. Secure data aggregation in wireless sensor networks: A comprehensive overview[J]. Comput. Netw., 2009, 53(12):2022–2037.
[24]WAGNER D. Resilient aggregation in sensor networks[C]//Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks. New York, NY,USA: ACM, SASN 04, 2004.
[25]SHRIVASTAVA N, BURAGOHAIN C, AGRAWAL D, et al. Medians and beyond: new aggregation techniques for sensor networks[C]//Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems. New York, NY, USA:ACM, SenSys 04, 2004.
[26]JI S, CAI Z. Distributed data collection in large-scale asynchronous wireless sensor networks under the generalized physical interference model[J]. IEEE/ACM Transactions on Networking, 2013.
[27]JI S, CAI Z. Distributed data collection and its capacity in asynchronous wireless sensor networks[C]//INFOCOM, 2012:2113–2121.
[28]JI S, BEYAH R, CAI Z. Snapshot/continuous data collection capacity for large-scale probabilistic wireless sensor networks[C]//INFOCOM. .[S.l.]: [s.n.] , 2012:1035–1043.
[29]CHENG S, LI J, CAI Z. O( )-Approximation to Physical World by Sensor Networks[C]//INFOCOM. .[S.l.]: [s.n.] , 2013.
[30]CHENG S, LI J, REN Q, et al. Bernoulli sampling based (ε,δ)-approximate aggregation in large-scale sensor networks[C]//Proceedings of the 29th conference on Information communications. Piscataway, NJ, USA: IEEE Press, INFOCOM10, 2010.
[31]CHENG S, LI J. Sampling based (epsilon, delta)-approximate aggregation algorithm in sensor networks[C]//Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems. Washington, DC, USA:IEEE Computer Society, ICDCS 09, 2009.
[32]ZHANG B, CHENG X, ZHANG N, et al. Sparse target counting and localization in sensor networks based on compressive sensing[C]// Proceedings of IEEE INFOCOM, 2011:2255–2263.
[33]WU D, CHENG X, CHEN D, et al. A Monte Carlo method for mobile target counting[C]//2011 International Conference on Distributed Computing Systems, ICDCS 2011, Minneapolis, Minnesota, USA, June 20-24, 2011.[S.l.]: IEEE Computer Society, 2011:750–759.
[34]WU D, CHEN D, XING K, et al. A statistical approach for target counting in sensor based surveillance systems[C]//INFOCOM. .[S.l.]: [s.n.] , 2012:226–234.
[35]BARYSHNIKOV Y M, COMAN E G, KWAK K J, et al. Stochastic counting in sensor networks, or: noise is good[C]//Proceedings of the 4th IEEE International Conference on Distributed Computing in Sensor Systems. Berlin, Heidelberg:Springer-Verlag, DCOSS 08, 2008.
[36]FASOLO E, ROSSIM,WIDMER J, et al. In-network aggregation techniques for wireless sensor networks: a survey[J]. Wireless Communications, IEEE, 2007, 14(2):70–87.
[37]KANSAL A, NATH S, LIU J, et al. SenseWeb: an infrastructure for shared sensing[J].IEEE MultiMedia, 2007, 14(4):8–13.
[38]TRIGONI N, YAO Y, DEMERS A, et al. Multi-query optimization for sensor networks[C]//Proceedings of the First IEEE international conference on Distributed Computing in Sensor Systems. Berlin, Heidelberg: Springer-Verlag, DCOSS05, 2005.
[39]LI M, YAN T, GANESAN D, et al. Multi-user data sharing in radar sensor networks[C]//Proceedings of the 5th international conference on Embedded networked sensor systems. New York, NY, USA: ACM, SenSys 07, 2007.
[40]XU Y, SAIFULLAH A, CHEN Y, et al. Near optimal multi-application allocation in shared sensor networks[C]//Proceedings of the eleventh ACM international symposium on Mobile ad hoc networking and computing. New York, NY, USA:ACM, MobiHoc 10, 2010.
[41]TAVAKOLI A, KANSAL A, NATH S. On-line sensing task optimization for shared sensors[C]//Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks. New York, NY, USA: ACM, IPSN 10, 2010.
[42]TRIGONI N, YAO Y, DEMERS A, et al. Multi-query optimization for sensor networks[C]//In DCOSS. .[S.l.]: [s.n.] , 2005:307–321.
[43]XIANG S, LIM H B, TAN K L, et al. Two-tier multiple query optimization for sensor networks[C]//Proceedings of the 27th International Conference on Distributed Computing Systems. Washington, DC, USA: IEEE Computer Society, ICDCS 07, 2007.
[44]SELLIS T K. Multiple-query optimization[J]. ACM Trans. Database Syst., 1988,13:23–52. http://doi.acm.org/10.1145/42201.42203.
[45]ROY P, SESHADRI S, SUDARSHAN S, et al. Effcient and extensible algorithms for multiquery optimization[C]//Proceedings of the 2000 ACMSIGMOD international conference on Management of data. New York, NY, USA: ACM, SIGMOD 00, 2000.
[46]KRISHNAMURTHY S, WU C, FRANKLIN M. On-the-fly sharing for streamed aggregation[C]//Proceedings of the 2006 ACM SIGMOD international conference on Management of data. New York, NY, USA: ACM, SIGMOD 06, 2006.
[47]HAAS Z J, HALPERN J Y, LI L. Gossip-based ad hoc routing[J]. IEEE/ACM Trans.Netw., 2006, 14(3):479–491.
[48]KULIK J, HEINZELMAN W, BALAKRISHNAN H. Negotiation-based protocols for disseminating information in wireless sensor networks[J]. Wirel. Netw., 2002, 8(2/3):169–185.
[49]INTANAGONWIWAT C, GOVINDAN R, ESTRIN D, et al. Directed diusion for wireless sensor networking[J]. IEEE/ACM Trans. Netw., 2003, 11(1):2–16.
[50]BRAGINSKY D, ESTRIN D. Rumor routing algorthim for sensor networks[C]//Proceedings of the 1st ACM international workshop on Wireless sensornetworks and applications. New York, NY, USA: ACM, WSNA 02, 2002.
[51]HEINZELMAN W R, CHANDRAKASAN A, BALAKRISHNAN H. Energy-efficient communication protocol for wireless Microsensor networks[C]//Proceedings of the 33rd Hawaii International Conference on System Sciences-Volume 8 Washington, DC, USA: IEEE Computer Society, HICSS 00, 2000.
[52]CIDON I, SIDI M. Distributed assignment algorithms for multihop packet radio networks[J]. IEEE Transactions on Computers, 1989, 38(10):1353–1361.
[53]EPHREMIDES A, TRUONG T. Scheduling broadcasts in multihop radio networks[J].Communications, IEEE Transactions on, 1990, 38(4):456–460.
[54]RAMASWAMI R, PARHI K. Distributed scheduling of broadcasts in a radio network[J]//Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies. Technology: Emerging or Converging, INFOCOM 89. .[S.l.]: [s.n.] , 1989, 2:497–504.
[55]RAMANATHAN S, LLOYD E. Scheduling algorithms for multihop radio networks[J].IEEE/ACM Transactions on Networking, 1993, 1(2):166–177.
[56]NGO C, LI V. Centralized broadcast scheduling in packet radio networks via genetic-fix algorithms[J]. IEEE Transactions on Communications, 2003,51(9):1439–1441.
[57]CHAKRABORTY G. Genetic algorithm to solve optimum TDMA transmission schedule in broadcast packet radio networks[J]. IEEE Transactions on Communications,2004, 52(5):765–777.
[58]ERGEN S C, VARAIYA P. TDMA scheduling algorithms for wireless sensornetworks[J]. Wirel. Netw., 2010, 16(4):985–997.
[59]MOSCIBRODA T. The worst-case capacity of wireless sensor networks[C]//Proceedings of the 6th international conference on Information processing in sensor networks. New York, NY, USA: ACM, IPSN 07, 2007.
[60]INCEL O, KRISHNAMACHARI B. Enhancing the data collection rate of tree-based aggregation in Wireless Sensor Networks[C]//5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks,2008. SECON 08. .[S.l.]: [s.n.] , 2008:569–577.
[61]GHOSH A, INCEL O, KUMAR V, et al. Multi-channel scheduling algorithms for fast aggregated convergecast in sensor networks[C]//IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, 2009. MASS 09. .[S.l.]: [s.n.] , 2009:363–372.
[62]SO J, VAIDYA N H. Multi-channel mac for ad hoc networks: handling multi-channel hidden terminals using a single transceiver[C]//Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing. New York, NY, USA: ACM, MobiHoc 04, 2004.
[63]ZHOU G, HUANG C, YAN T, et al. MMSN: Multi-frequency media access control for Wireless Sensor Networks[C]//25th IEEE International Conference on Computer Communications, INFOCOM 2006. .[S.l.]: [s.n.] , 2006:1–13.
[64]LE H K, HENRIKSSON D, ABDELZAHER T. A practical multi-channel media access control protocol for wireless sensor networks[C]//Proceedings of the 7th international Conference on Information Processing in Sensor Networks. Washington, DC, USA: IEEE Computer Society, IPSN 08, 2008.
[65]WU Y, STANKOVIC J, HE T, et al. Realistic and efficient multi-channel communications in wireless sensor networks[C]//The 27th IEEE Conference on Computer Communications,INFOCOM 2008. .[S.l.]: [s.n.] , 2008.
[66]GHOSH A, INCEL O D, KUMAR V S A, et al. Multichannel scheduling and spanning trees: throughput-delay tradeo for fast data collection in sensor networks[J]. IEEE/ACM Trans. Netw., 2011, 19(6):1731–1744.
[67]PHUNG KH, LEMMENS B,MIHAYLOV M, et al. Multi-agent learning for multi-channel wireless sensor networks[C]//IEEE International Conference on Communications(ICC), 2012. .[S.l.]: [s.n.] , 2012:6448–6452.
[68]TANG L, SUN Y, GUREWITZ O, et al. EM-MAC: a dynamic multichannel energy-ecient MAC protocol for wireless sensor networks[C]//Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York, NY, USA: ACM, MobiHoc 11, 2011.
[69]WANG X, GARCIA-LUNA-ACEVES J J. Distributed joint channel assignment, routing and scheduling for wireless mesh networks[J]. Computing Communication, 2008,31(7):1436–1446.
[70]CHEN X, HAN P, HE Q S, et al. A multi-channel MAC protocol for wireless sensor networks[C]//The Sixth IEEE International Conference on Computer and Information Technology, 2006. CIT 06. .[S.l.]: [s.n.] , 2006:224–224.
[71]ZHANG J, ZHOU G, HUANG C, et al. TMMAC: An energy ecient multi-channel MAC protocol for Ad Hoc networks[C]//IEEE International Conference on Communications, 2007. ICC 07. .[S.l.]: [s.n.] , 2007:3554–3561.
[72]INCEL O, GHOSH A, KRISHNAMACHARI B, et al. Fast data collection in tree-based wireless sensor networks[J]. IEEE Transactions on Mobile Computing, 2012,11(1):86–99.
[73]GANDHAM S, ZHANG Y, HUANG Q. Distributed minimal time convergecast scheduling in Wireless Sensor Networks[C]//Proceedings of the 26th IEEE International Conference on Distributed Computing Systems. 2006. Washington, DC, USA:IEEE Computer Society, ICDCS 06.
[74]YU B, LI J, LI Y. Distributed data aggregation scheduling in Wireless Sensor Networks[C]//IEEE International Conference on Computer Communications, INFOCOM 2009. .[S.l.]: [s.n.] , 2009:2159–2167.
[75]WAN P J, CHENG Y, WANG Z, et al. Multi-flows in multi-channel multi-radio multihop wireless networks[C]//IEEE Conference on Computer Communications, INFOCOM 2011. .[S.l.]: [s.n.], 2011:846–854.
[76]CAMPBELL C E A, KHAN S, SINGH D, et al. Multi-channel multi-radio using 802.11 based media access for sink nodes in Wireless Sensor Networks[J]. Sensors,2011, 11(5):4917–4942.
[77]REN W, ZHAO Q, RAMANATHAN R, et al. Broadcasting in multi-radio multi-channel wireless networks using simplicial complexes[J]. Wirel. Netw., 2013, 19(6):1121-1133.