999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

植物和小麥SnRK2基因家族的研究進(jìn)展

2014-04-29 00:44:03張洪映賈宏昉代曉燕
安徽農(nóng)業(yè)科學(xué) 2014年13期
關(guān)鍵詞:植物

張洪映 賈宏昉 代曉燕

摘要 干旱、高鹽、極端溫度等逆境因子是限制作物產(chǎn)量和品質(zhì)提高的重要因素。挖掘和利用逆境應(yīng)答基因資源是改良其抗逆性的前提和基礎(chǔ),對于研究植物抗逆機(jī)制具有重要意義。蔗糖非發(fā)酵相關(guān)蛋白激酶家族2(Sucrose nonfermenting1related protein kinase 2,SnRK2)是廣泛存在于植物中的一類Ser/Thr蛋白激酶,參與植物體內(nèi)多種信號途徑的轉(zhuǎn)導(dǎo),在植物的抗逆境生理過程中扮演了重要角色。為了促進(jìn)小麥SnRK2基因家族的研究,該文對SnRK2基因的結(jié)構(gòu)、抗逆功能、互作蛋白,以及小麥SnRK2基因家族的研究現(xiàn)狀進(jìn)行了闡述。

關(guān)鍵詞 植物;小麥;SnRK2;抗逆性

中圖分類號 S511 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號 0517-6611(2014)13-03805-03

Abstract Drought, salinity and low temperatures are major factors limiting tobacco productivity and quality. To survive adverse stresses, plants have developed complex signaling networks to perceive external stimuli, and then manifest adaptive responses at molecular and physiological levels. Mining and deployment of these genetic resources are the foundations for improving the drought resistance in wheat (Triticum aestivum L.). Sucrose nonfermenting1related protein kinase 2 (SnRK2) is a class of Ser/Thr protein kinase widely existing in plant and involved in a variety of signaling pathways, which play a pivotal role in plant stress physiology. To promote the study of SnRK2 kinase, the current plant and wheat SnRK2s studies, including sequence structure, function of stress resistance, and interacting proteins will be reviewed in this paper.

Key words Plant; Wheat; SnRK2; Stress resistance

蛋白質(zhì)的可逆磷酸化是逆境條件下植物體內(nèi)能量代謝和信號轉(zhuǎn)導(dǎo)的重要途徑,由蛋白激酶和蛋白磷酸酶和共同調(diào)控。其中,蛋白質(zhì)的磷酸化是通過蛋白激酶催化完成的[1]。研究發(fā)現(xiàn),許多蛋白激酶在植物新陳代謝和防御機(jī)制的信號轉(zhuǎn)遞中具有重要作用。其中,SNF1是一種被稱為蔗糖非發(fā)酵的蛋白激酶(surcrose nonfermenting1,SNF1),最初在酵母中分離出來,響應(yīng)細(xì)胞內(nèi)低葡萄糖信號。現(xiàn)在被廣泛研究的SNF1蛋白激酶超家族包括:酵母SNF1、哺乳動(dòng)物AMPK(AMPactivated protein kinase,AMPK)和植物SnRK(SNF1related protein kinase)。根據(jù)結(jié)構(gòu)和功能特點(diǎn),可將SnRK超家族分為3個(gè)亞族:SnRK1、SnRK2和SnRK3,3個(gè)亞組的基因序列間有42%~46%的相似性,主要差異在C端調(diào)控區(qū)。其中,SnRK1與SNF1/AMPK序列相似度高,具有直接的功能同源性,SnRK2和SnRK3則不同于SnRKl家族,它們是植物特有的基因家族[2-4]。近年來研究發(fā)現(xiàn),SnRK2廣泛參與了植物的非生物脅迫應(yīng)答[5-7]。

小麥?zhǔn)侵匾募Z食作物,基因組龐大、序列復(fù)雜、基因轉(zhuǎn)化困難等原因,使小麥的結(jié)構(gòu)基因組、功能基因組和蛋白質(zhì)組研究遠(yuǎn)落后于水稻、玉米等作物。小麥SnRK2蛋白激酶的功能及抗逆機(jī)理研究未形成完整體系。因此,筆者對小麥SnRK2激酶的研究進(jìn)行綜述,以期為促進(jìn)小麥抗逆基因資源的研究和利用。

1 SnRK2的序列結(jié)構(gòu)

SnRK2是一個(gè)相對較小的植物專一性蛋白激酶家族,在擬南芥、水稻和玉米等的研究發(fā)現(xiàn)其成員約為10個(gè),具有典型的N端和C端功能結(jié)構(gòu)域,N端催化域高度保守,C端為調(diào)控區(qū)[5-7]。與SnRK1相比,SnRK2的C端缺少140~160個(gè)氨基酸,相對較短,該C端的顯著特征是具有一個(gè)富含谷氨酸或天冬氨酸(D/E)的酸性補(bǔ)丁結(jié)構(gòu)。據(jù)此可將SnRK2分為SnRK2a(Subclass I和Subclass II)亞族和SnRK2b(Subclass III)亞族。其中SnRK2a的C端富含天冬氨酸,而SnRK2b中富含谷氨酸。研究發(fā)現(xiàn),SnRK2的C端結(jié)構(gòu)域和酶的激活、ABA信號傳遞及蛋白間的相互作用相關(guān)[8-9]。

2 小麥SnRK2基因的研究

植物應(yīng)答逆境脅迫的過程非常復(fù)雜,涉及多種信號傳遞通路。根據(jù)是否有ABA(脫落酸)的參與,將脅迫應(yīng)答分為ABA依賴途徑和非ABA依賴途徑。越來越多的研究表明,SnRK2家族成員以不同的調(diào)控方式廣泛參與植物的逆境脅迫信號傳遞,在植物的逆境應(yīng)答中具有重要作用。

在植物中分離到的第1個(gè)SnRK2成員(PKABA1)來自經(jīng)ABA處理的小麥胚胎cDNA文庫,研究發(fā)現(xiàn)PKABA1可以與ABA 反應(yīng)元件結(jié)合因子ABF結(jié)合從而調(diào)節(jié)植物體內(nèi)的脫落酸(abscisic acid,ABA);受ABA、冷和滲透脅迫誘導(dǎo)表達(dá)[10]。研究者隨后對PKABA1高度同源基因TaPK3(相似性為97%)的研究發(fā)現(xiàn),TaPK3基因在小麥新生幼芽中富集,不受非生物脅迫誘導(dǎo)表達(dá)。可見,SnRK2基因的功能并不局限在植物的脅迫抗性方面[11]。通過掃描干旱脅迫小麥幼苗的cDNA文庫,2個(gè)高度同源的SnRK2基因W55a和W55c(相似性為98.54%)被克隆,其屬于Subclass II亞族成員;位于小麥2BS染色體上;可以被干旱、高鹽、ABA和水楊酸等激活,但不受冷脅迫誘導(dǎo)[12]。從小麥根部cDNA差減文庫中分離到1個(gè)新的SnRK2基因TaSRK2C1;基因表達(dá)分析研究發(fā)現(xiàn),其受干旱、高鹽、低溫和外源ABA誘導(dǎo)表達(dá),在植物中過表達(dá)TaSRK2C1基因能顯著增強(qiáng)植株的抗逆能力[13]。小麥TaSnRK2.9基因的克隆與生物信息學(xué)分析發(fā)現(xiàn),其與水稻SAPK9基因直系同源,同屬于Subclass II亞族;在小麥的根、莖、葉和花等器官均都有表達(dá),且在葉片的表達(dá)量最高;目前還沒有對其功能的系統(tǒng)報(bào)道[14]。

筆者對小麥TaSnRK2.3、TaSnRK2.4、TaSnRK2.7和TaSnRK2.8的抗逆性研究發(fā)現(xiàn),4個(gè)基因在植物的各組織均有表達(dá),其中,TaSnRK2.3和TaSnRK2.4在新生組織中表達(dá)較高,而TaSnRK2.7和TaSnRK2.8在根部表達(dá)最高;TaSnRK2.7不能被ABA激活,而其他基因受ABA誘導(dǎo)表達(dá);4個(gè)基因同時(shí)受干旱、冷和高鹽脅迫誘導(dǎo);轉(zhuǎn)基因后均能顯著增強(qiáng)植物的非生物脅迫抗性[15-18]。通過對TaSnRK2.7基因組序列進(jìn)行直接測序,研究其單核苷酸多態(tài)性(Single nucleotide polymorphisms,SNP)發(fā)現(xiàn),一些SNP位點(diǎn)與抗逆相關(guān);利用SNP將TaSnRK2.7精細(xì)定位于小麥2AL染色體WMC179.4 和WMC401標(biāo)記之間,與磷素和可溶性糖高效積累的QTLs定位相近[19-20]。對TaSnRK2.8的SNP研究發(fā)現(xiàn)了一個(gè)與SNP與苗期生物量和可溶性糖顯著關(guān)聯(lián)的SNP [21]。這些研究結(jié)果顯示,SnRK2可能與其直系同源基因酵母SNF1相似,具有調(diào)節(jié)糖代謝功能。

3 SnRK2基因參與植物體內(nèi)的糖代謝途徑

糖不僅能夠?yàn)橹参锏纳L發(fā)育提供能量和代謝中間產(chǎn)物,同時(shí)還具有信號傳遞功能,調(diào)節(jié)逆境相關(guān)基因的表達(dá)。然而,由于糖信號轉(zhuǎn)導(dǎo)與植物體內(nèi)的生長代謝過程及激素等信號轉(zhuǎn)導(dǎo)途徑等形成復(fù)雜的網(wǎng)絡(luò)聯(lián)系,其確切機(jī)制尚未清楚[22-24]。與SnRK2基因的SNP分析一致,轉(zhuǎn)基因功能研究發(fā)現(xiàn),擬南芥AtSnRK2.6基因[25]和小麥TaSnRK2.8基因[18]在植物中過表達(dá)后,能顯著增加可溶性糖含量、降低細(xì)胞滲透勢從而增強(qiáng)植物的抗逆能力。可見,SnRK2基因同時(shí)參與了植物體內(nèi)的糖代謝和逆境信號傳遞過程,關(guān)于其確切的分子調(diào)控機(jī)制尚待研究。

4 SnRK2參與逆境應(yīng)答的一種調(diào)控機(jī)制

對SnRK2的上游激活因子和特異性底物的研究可以深入了解其功能。從目前的研究結(jié)果看,SnRK2可以被ABA及滲透脅迫等逆境因子激活,其活性調(diào)控是以自身磷酸化為基礎(chǔ),但其調(diào)控機(jī)制并不清楚。早期對SnRK2上游活化因子的研究發(fā)現(xiàn)蛋白磷酸酶2C(PP2C)對OSTI/SnRK2.6基因起負(fù)調(diào)控作用[26]。前人在檢測SnRK2酶活及尋找靶蛋白的過程中發(fā)現(xiàn)其底物主要是堿性亮氨酸拉鏈類(Basic leucine zipper,bZIP)轉(zhuǎn)錄因子。例如在小麥、水稻和擬南芥里發(fā)現(xiàn)ABA下游應(yīng)答轉(zhuǎn)錄因子ABF/AREB(ABA responsive transcription factots)可能是SnRK2家族基因的磷酸化底物[27-28]。美國和德國的2個(gè)實(shí)驗(yàn)室分別報(bào)道了通過體外試驗(yàn)研究ABA信號傳遞途徑的發(fā)現(xiàn)[29-31]:PYR/PYL/RCAR家族是ABA的受體,其與ABI1和ABI2等蛋白磷酸酶(PP2Cs)、SnRK2蛋白激酶共同調(diào)控ABA依賴型基因的表達(dá)。當(dāng)植物體內(nèi)缺乏ABA時(shí),PP2C可以抑制SnRK2的自我磷酸化;在ABA存在條件下,ABA與受體PYR/PYL/RCAR形成的復(fù)合體可以捕獲PP2C,此時(shí)的SnRK2可以自我磷酸化,激活下游轉(zhuǎn)錄因子ABF,開啟ABA應(yīng)答元件ABRE的轉(zhuǎn)錄,進(jìn)而調(diào)控下游ABA依賴型基因的表達(dá)。植物體內(nèi)的研究發(fā)現(xiàn),擬南芥中受ABA誘導(dǎo)的SnRK2家族Subclass III亞族成員的信號傳遞途徑符合ABAPYRPP2CSnRK轉(zhuǎn)錄因子相偶聯(lián)的ABA信號通路[32-34]。

5 小結(jié)與展望

綜上所述,小麥SnRK2成員具有組織表達(dá)差異,以不同的調(diào)控方式廣泛參與了植物的逆境脅迫應(yīng)答反應(yīng)。根據(jù)前人的研究,SnRK2成員有其獨(dú)特的逆境信號傳遞功能,一些成員并不受ABA的誘導(dǎo)激活。據(jù)此,Shukla和Mattoo根據(jù)前人的研究結(jié)果提出,SnRK2的信號轉(zhuǎn)導(dǎo)途徑可能包括2個(gè)過程:首先,逆境脅迫信號引發(fā)植物內(nèi)源ABA的釋放,進(jìn)而激活SnRK2,活化后的SnRK2可以進(jìn)一步磷酸化下游AREB,最終引發(fā)一系列基因的表達(dá)。另一條信號傳遞過程則不依賴于內(nèi)源ABA的釋放,SnRK2可以直接作用于相關(guān)基因,引發(fā)逆境脅迫下一系列基因的應(yīng)答反應(yīng)[35]。因此,下一步的研究主要應(yīng)該集中在SnRK2基因的非ABA依賴信號傳遞途徑方面。

參考文獻(xiàn)

[1] KNIGHT H.Calcium signaling during abiotic stress in plants[J].International Review of Cytology,2000,195:269-325.

[2] HALFORD N G,HARDIE D G.SNF1related protein kinases:global regulators of carbon metabolism in plants[J].Plant Mol Biol,1998,37:735-748.

[3] HALFORD N G,HEY S J.Snf1related protein kinases(SnRKs)act within an intricate network that links metabolic and stress signalling in plants[J].Biochem J,2009,419:247-259.

[4] ZHANG H Y,MAO X G,JING R L.SnRK2 acts within an intricate network that links sucrose metabolic and stress signaling in wheat[J].Plant Signaling & Behavior,2011,6:652-654.

[5] KOBAYASHI Y,MURATA M,MINAMI H,et al.Abscisic acidactivated SNRK2 protein kinases function in the generegulation pathway of ABA signal transduction by phosphorylating ABA response elementbinding factors[J].Plant J,2005,44:939-949.

[6] KOBAYASHI Y,YAMAMOTO S,MINAMI H, et al.Differential activation of the rice sucrose nonfermenting1related protein kinase2 family by hyperosmotic stress and abscisic acid[J].Plant Cell,2004,16:1163-1177.

[7] HUAI J,WANG M,HE J,ZHENG J,et al.Cloning and characterization of the SnRK2 gene family from Zea mays[J].Plant Cell Rep,2008,27:1861-1868.

[8] HUANG J F,TEYTON L,HARPER J F.Activation of a Ca(2+)dependent protein kinase involves intramolecular binding of a calmodulinlike regulatory domain[J].Biochemistry,1996,35:13222-13230.

[9] VLAD F,RUBIO S,RODRIGUES A,et al.Protein phosphatases 2C regulate the activation of the Snf1related kinase OST1 by abscisic acid in Arabidopsis[J].Plant Cell,2009,21:3170-3184.

[10] HOLAPPA L D,WALKERSIMMONS M K.The wheat abscisic acidresponsive protein kinase mRNA PKABA1,is upregulated by dehydration,cold temperature,and osmotic stress[J].Plant Physiol,1995,108:1203-1210.

[11] HOLAPPA L D,WALKERSIMMONS M K.The wheat protein kinase gene,TaPK3,of the PKABA1 subfamily is differentially regulated in greening wheat seedlings[J].Plant Molecular Biology,1997,33:935-941.

[12] XU Z S,LIU L,NI Z Y,et al.W55a encodes a novel protein kinase that is involved in multiple stress responses[J].Journal of Integrative Plant Biology,2009,51:58-66.

[13] DU X M,ZHAO X L,LI X J,et al.Overexpression of TaSRK2C1,a wheat SNF1related protein kinase 2 gene,increases tolerance to dehydration,salt,and low temperature in transgenic tobacco[J].Plant Mol Biol Rep,2013,31:810-821.

[14] 連魏衛(wèi),唐益苗,高世慶,等.小麥TaSnRK2.9蛋白激酶基因克隆與生物信息學(xué)分析[J].中國農(nóng)學(xué)通報(bào),2011,27(33):6-12.

[15] TIAN S J,MAO X G,ZHANG H Y,et al.Cloning and characterization of TaSnRK2.3,a novel SnRK2 gene in common wheat[J].Journal of Experimental Botany,2013,64:2063-2080.

[16] MAO X G,ZHANG H Y,TIAN S J,et al.TaSnRK2.4,a SNF1type serine/threonine protein kinase of wheat(Triticum aestivum L.),confers enhanced multistress tolerance in Arabidopsis[J].J Exp Bot,2010,61:683-696.

[17] ZHANG H Y,MAO X G,JING R L,et al.Characterization of a common wheat(Triticum aestivum L.)TaSnRK2.7 gene involved in abiotic stress responses[J].J Exp Bot,2011,62:975-988.

[18] ZHANG H Y,MAO X G,WANG C S,et al.Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought,salt and low temperature in Arabidopsis[J].PLoS ONE,2010,5:16041.

[19] ZHANG H Y,MAO X G,ZHANG J N,et al.Genetic diversity analysis of the drought resistance gene TaSnRK2.7A in common wheat[J].Genetica,2011,139:743-753.

[20] ZHANG H Y,MAO X G,WU X S,et al.An abiotic stress response gene TaSnRK2.7B in wheat accessions:genetic diversity analysis and gene mapping based on SNPs[J].Gene,2011,478:28-34.

[21] ZHANG H Y,MAO X G,ZHANG J N,et al.Single nucleotide polymorphisms and association analysis of drought resistance gene TaSnRK2.8 in common wheat[J].Plant Physiology and Biochemistry,2013,70:174-181.

[22] HO S L,CHAO Y C,TONG W F,et al.Sugar coordinately and differentially regulates growthand stressrelated gene expression via a complex signal transduction network and multiple control mechanisms[J].Plant Physiol,2001,125:877.

[23] SMEEKENS S.Sugarinduced signal transduction in plants[J].Plant Biol,2000,51:49-81.

[24] ROOK F,CORKE F,CARD R.Impaired sucroseinduction mutants reveal the modulation of sugarinduced starch biosynthetic gene expression by abscisic acid signalling[J].Plant J,2001,26:4210-4233.

[25] ZHENG Z F,XU X P,CROSLEY R A,et al.The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis[J].Plant Physiol,2010,153:99-113.

[26] LEUNG J,MERLOT S,GIRAUDAT J.The Arabidopsis abscisic acidinsensitive 2 (ABI2)and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction[J].Plant Cell,1997,9:759-771.

[27] KAGAYA Y,HOBO T,MURATA M,et al.Abscisic acid·induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor,TRABI[J].Plant Cell,2002,14:3177-3189.

[28] FURIHATA T,MARUYAMA K,F(xiàn)UJITA Y,et al.Abscisic aciddependent multisite phosphorylation regulates the activity of a transcription activator AREBI[J].Proc Natl Acad Sci USA,2006,103:1988-1993.

[29] MELCHER K,NG L M,ZHOU X E,et al.A gatelatchlock mechanism for hormone signaling by abscisic acid receptor[J].Nature,2009,462:602-608.

[30] FUJII H,CHINNUSAMY V,RODRIGUES A,et al.In vitro reconstitution of an abscisic acid signalling pathway[J].Nature,2009,462:660-664.

[31] SOON F F,NG L M,ZHOU X E,et al.Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases[J].Science,2012,335:85-88.

[32] FUJITA Y,NAKASHIMA K,YOSHIDA T,et al.Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J].Plant Cell Physiol,2009,50:2123-2132.

[33] UMEZAWA T,SUGIYAMA N,MIZOGUCHI M,et al.Type 2C protein phosphatases directly regulate abscisic acidactivated protein kinases in Arabidopsis[J].Proc Natl Acad Sci USA,2009,106:17588-17593.

[34] VLAD F,RUBIO S,RODRIGUES A,et al.Protein phosphatases 2C regulate the activation of the Snf1related kinase OST1 by abscisic acid in Arabidopsis[J].Plant Cell,2009,21:3170-3184.

[35] SHUKLA V,MATTOO A K.Sucrose nonfermenting 1 related protein kinasc 2(SnRK2):a family of protein kinases involved in hyperosmotic stress signaling[J].Physiol Mol Biol Plants,2008,14:91-100.

猜你喜歡
植物
誰是最好的植物?
為什么植物也要睡覺
長得最快的植物
各種有趣的植物
植物也會(huì)感到痛苦
會(huì)喝水的植物
植物的防身術(shù)
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 中文字幕中文字字幕码一二区| 亚洲资源站av无码网址| 国产成人免费视频精品一区二区| 中文字幕无码av专区久久| 亚洲看片网| 波多野结衣一区二区三区四区| 一级黄色片网| 国产美女无遮挡免费视频| 国产18在线播放| 亚洲国语自产一区第二页| 亚洲国产精品日韩av专区| 欧美精品一区在线看| 成人免费午夜视频| 青青青草国产| 亚洲香蕉久久| 国产免费黄| 亚洲最黄视频| 免费一级大毛片a一观看不卡| 久久精品日日躁夜夜躁欧美| 四虎成人精品| 欧美不卡视频在线观看| 亚洲国产中文欧美在线人成大黄瓜 | 91亚洲精选| 精品自拍视频在线观看| 国产成人久视频免费| 2020最新国产精品视频| 又猛又黄又爽无遮挡的视频网站| 亚洲国产系列| 丝袜高跟美脚国产1区| 国产精品人人做人人爽人人添| 国产美女在线免费观看| 中文字幕天无码久久精品视频免费| 久久青草免费91线频观看不卡| 国产一级片网址| 日本影院一区| 欧洲极品无码一区二区三区| 亚洲国产欧美自拍| 欧美精品一二三区| 国产91丝袜| 国产99视频免费精品是看6| 精品丝袜美腿国产一区| 精品国产香蕉在线播出| 香蕉在线视频网站| 亚洲国语自产一区第二页| 一本大道在线一本久道| 久久精品人人做人人| a级毛片在线免费观看| 狠狠色噜噜狠狠狠狠奇米777| 欧美色图第一页| 久久无码av一区二区三区| 色丁丁毛片在线观看| 67194在线午夜亚洲| 一级全黄毛片| www.av男人.com| 日韩一区二区三免费高清| 精品一区二区久久久久网站| 99成人在线观看| 日日噜噜夜夜狠狠视频| 国产精品第页| 欧美在线黄| 日本不卡在线播放| 欧美一区国产| 国产精品无码影视久久久久久久| 国产情侣一区| 亚洲色欲色欲www网| 国产欧美精品专区一区二区| 色妺妺在线视频喷水| 欧美一级视频免费| av大片在线无码免费| 青青青视频免费一区二区| 精品久久高清| 国产精品一区二区国产主播| 日韩第一页在线| 中文字幕日韩丝袜一区| 伊人AV天堂| 久久综合一个色综合网| 免费va国产在线观看| 国产在线一区视频| 久一在线视频| 成人综合网址| 谁有在线观看日韩亚洲最新视频| 日韩国产另类|