朱小東
摘要:作為一項重大的科技突破,納米枝術的研發已經應用到了社會的各個領域中之中,在機械工程中,應用納米技術已經成為了核心,其外在的表現存在于各個方面。
關鍵詞:納米技術;納米材料
前言
自從1990年7月在美國召開的第一屆國際納米科學技術會議上,正式宣布納米材料科學為材料科學的一個新分支開始,納米技術便一步一步進入人們的生活。納米科技是研究由尺寸在0.1-100nm之間的物質組成的體系運動規律和相互作用,以及實際應用中的技術問題的科學技術。從材料的結構層次來說,它介于宏觀物質和微觀原子、分子的中間領域。納米技術不是一門單一的新型學科或者技術,它廣泛應用于各類學科中,其中在機械工程中的應用對于機械工程學科的技術變革起到了不可估量的作用。納米技術運用到機械方面尤其是產生了微型機械技術已經成為21世紀研究的核心技術,很多國家在納米技術上開始了越來越多的研究。
1.關于納米技術
所謂的納米技術就是指用單一的分子、原則制造物質的一種科學技術,納米科學技術已經成為了將很多現代的先進科學技術作為了基礎科學技術,并且成為了現代科學和現代技術進行組合的重要產物之一,現代科學主要包括分子生物學、介觀物理、量子力學和混沌物理,現代技術主要包括核分析技術、掃描隧道顯微鏡技術,微電子技術以及計算機技術,納米技術一定會引發起一系列的全新的科學技術,比如納米機械學、納米材科學以及納電子學等等。
2.微型納米軸承
在沒有納米技術之前,軸承的體積都很大,因此會有較大的摩擦力,一般都是依靠潤滑油減少摩擦力,但減少并不意味著可以避免摩擦力。運用納米技術開發的微型納米軸承幾乎沒有摩擦力,美國科學家研制的這種微型軸承具有兩個明顯的特點,首先是非常小,該軸承的直徑僅有一根頭發的萬分之一,而運用在機電系統中的其直徑更是只有1nm。僅有微型機械的千分之一。其次,幾乎沒有摩擦力,這種納米微型軸承的摩擦力比起以往研制的微型軸承,納米微型軸承的摩擦力都不到其最小值的千分之一。
3.納米材料運用
合肥大學研制成功了納米新型陶瓷刀具,這標志著利用納米材料制作新型金屬陶瓷刀具的問世。這項研究史載金屬彈詞中加入了納米氧化鈦從而細化品粒。因為對于品粒的細化可以增加材料的硬度和甚至斷裂任性。同時,這種納米技術的應用也大大優化了其力學性能,納米材料加入到傳統的金屬陶瓷中對其力學性能來說是個很大的提供,刀具的壽命也提高到2倍以上。
4.納米耐磨復合涂層的應用
由于納米材料的顆粒之間往往都存在著庫侖力、范德華力,有些顆粒甚還與化學鍵結合,這也就導致了陶瓷的顆粒極其容易團聚,并且顆粒之間越小其進行的團聚就越緊,也就使其應有的性能很難得到充分的發揮,這個問題也就能夠通過施加機械能和化學作用這兩種力式來進行解決,但是,硬團聚的顆粒之間緊密結合,僅僅通過化學作用是遠遠不夠的,必須要對其輔助很大的機械力,這些機械力主要包括剪切力和撞擊力。
5.納米技術馬達
納米技術馬達的最新一代是由一家美國公司生產的,Mano Muscle公司生產這款納米技術馬達首先亮世于中國的深圳,從體積方面測量,新一款的納米技術馬達僅有傳統電磁馬達體積的二十分之一。其功率能夠負載大約四千克的重量,使用壽命更是達到了100萬次,性能如此良好,但其長度卻不到一根火柴桿的長度。該馬達通過采用納米技術制造的智能材料,將傳統的銅、鐵、磁等材料替代,因此,新一代的馬達相比于傳統馬達具有許多優點。重量更輕,幾乎沒有噪音,而制造成本也更低。目前這種微型馬達在機械中的運用并不是很廣泛,主要運用于汽車的電動車窗方面。
6.納米磁性液體用于旋轉軸的動態密封
通常靜態的密封都是采用橡膠、塑料或金屬等材料制成的“O”形環作為密封元件。旋轉條件下的動態密封一直是未能解決的問題,無法在高速、高真空條件下進行動態密封。納米技術的出現促進了磁性液體密封技術的產生。南京大學已試制成水基、烷基、二脂基、硅油等多種類型的磁性液體。在電子計算機的硬盤轉處已普遍采用磁性液體的防塵密封,除此之外磁性液體還可于制造新型潤滑劑,巧妙利用磁場原理改善潤滑效果。納米技術在機械工程中的應用舉不勝舉,通過以上這些新型技術的產生,我們不難看出納米技術對于機械工程的發展有著深遠影響。同時,相對于傳統機械工程來說,也正是因為納米技術有很多優勢才能取得這樣顯著的成果。
6.1納米磁性液體在旋轉軸中應用的尺寸效應
在納米技術領域,其顯著成果之一就是在旋轉軸中,對傳統的尺寸單位進行了縮小,以前的計量單位級為毫米,而今則是納米級,而1納米僅相當于1毫米的百萬分之一,如果運用在機械工程之中,那么機械的體積會因為納米技術的應用而極大的降低,在此基礎上就有了微型機械為代表的新型機械的誕生和生產。實際上,這種微型化并不僅僅是單純意義上的尺度上發生了重大變化,而更多的是指可以成批進行制作生產微傳感器、集合微結構、微驅動器、微電路等處置裝置于一體的微型機電系統。
6.2 納米磁性液體在旋轉軸中應用的摩擦性能
納米技術最為顯著的一個特征就是其摩擦性能,在機械工程中,特別是結構和尺寸比較大的機械,由于摩擦力的影響,各種軸承對會因摩擦出現損傷,對機械的磨損非常嚴重。而納米材料,則幾乎處在一種無摩擦的狀態,非常好的克服了摩擦的問題。
6.3 納米磁性液體在旋轉軸中應用的材料以及多元化
納米技術的應用使原材料能夠以一種更加微小的形態出現,而且性能強大。其首先不僅改良了傳統的材料,同時通過采用納米科技,更多更新的新材料也不斷涌現。磁性液體密封技術證明了磁性液體能夠能夠被磁場控制的特性,另外在材料的應用過程中,通過向其添加一定的微量元素,還能夠使材料獲得更好的效果。
7.結語
納米材料在機械工程中改變甚至顛覆了傳統模式的運轉,顯示了其強大的科技含量,但是在其運用中,我們仍有很多方面亟待解決:如何準確表征納米材料的各種精細結構;怎樣從結構上分析、解釋納米材料的新特性;能否利用某種標準來預測微區尺寸減少到多大時,材料表現出特殊的性能等等。對于這些問題,我們仍需深入研究,以便納米技術更好地服務于機械工程領域。
參考文獻:
[1]樊東黎.納米技術和納米材料的發展和應用[J].金屬熱處理.2011(02).
[2]閆超.納米技術在機械工程中的應用淺談[J].價值工程.2010(29).