999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于ARIMA模型的匯率預(yù)測研究

2014-04-09 00:28:55魏紅燕孟純軍
時(shí)代金融 2014年8期

魏紅燕+孟純軍

【摘要】本文采用2010年7月1日至2013年11月30日的人民幣兌美元匯率周平均值,建立了ARIMA模型,對并匯率序列進(jìn)行預(yù)測和評價(jià)。實(shí)證結(jié)果表明,ARIMA(2,1,2)模型預(yù)測結(jié)果比較成功,基本能反映人民幣升值的趨勢。

【關(guān)鍵詞】人民幣匯率 ARIMA模型 匯率預(yù)測

一、引言

自美國金融危機(jī)爆發(fā)以來,人民幣匯率的走勢已成為人們關(guān)注的焦點(diǎn)之一。尤其是近年來中美貿(mào)易失衡加劇,美國政府將其對中巨額貿(mào)易赤字的根源歸咎于人民幣幣值的低估,并將人民幣兌美元匯率視為影響中美雙方經(jīng)貿(mào)關(guān)系的焦點(diǎn)問題。因此,正確預(yù)測人民幣兌美元匯率具有重要的現(xiàn)實(shí)意義。

匯率預(yù)測的研究很多,現(xiàn)在國內(nèi)的主要研究有:ARIMA模型,GARCH模型,GARCH_M模型,PPP模型,神經(jīng)網(wǎng)絡(luò)模型,VAR模型及多元回歸模型。戴曉楓和肖慶憲[1](2003)利用ARIMA模型和EGARCH模型并進(jìn)行預(yù)測和評價(jià)人民幣匯率;張奕韜[2](2009)基于ARIMA模型的外匯匯率時(shí)間序列預(yù)測研究;閆海峰,謝莉莉[3](2009)基于GARCH-M模型的人民幣匯率預(yù)測;許少強(qiáng),李亞敏[4](2007)則利用參考“一籃子”貨幣的人民幣匯率預(yù)測—基于ARMA模型的實(shí)證方法;等等。

本文通過運(yùn)用時(shí)間序列ARIMA模型的理論與方法,對非平穩(wěn)時(shí)間序列差分后建立平穩(wěn)的時(shí)間序列,從而進(jìn)行模型參數(shù)的選取和預(yù)測。最后,對模型的預(yù)測結(jié)果進(jìn)行評價(jià)分析,認(rèn)為該模型在匯率的走勢較平穩(wěn)時(shí),能夠很好的擬合匯率的即時(shí)走勢,對其預(yù)測所得結(jié)果在誤差允許的范圍內(nèi)。

二、模型知識(shí)概述

(一)ARIMA模型[5]

ARIMA模型,是將非平穩(wěn)時(shí)間序列轉(zhuǎn)化為平穩(wěn)時(shí)間序列,再將因變量對它的滯后值及隨機(jī)誤差項(xiàng)的現(xiàn)值和滯后值進(jìn)行回歸所建立的模型。ARIMA模型根據(jù)原序列是否平穩(wěn)及回歸中所含部分的不同,包含移動(dòng)平均過程(MA)、自回歸過程(AR)、自回歸移動(dòng)平均過程(ARMA)以及ARIMA過程。

設(shè)序列yt為d階單整序列,即yt~I(xiàn)(d),則:wt=Δdyt=(1-L)dyt,wt是平穩(wěn)序列,則我們對wt建立ARMA(p,q)模型。如果wt=Δdyt,且wt是一個(gè)ARMA(p,q)過程,則稱yt是(p,d,q)單整自回歸移動(dòng)平均模型,簡記為:MRIMA(p,d,q).模型形式為:

y■=φ■+■φ■y■+ε■-■θ■ε■

對ARMA(p,q)模型進(jìn)行參數(shù)估計(jì)后,可用來進(jìn)行預(yù)測。設(shè)預(yù)測的原點(diǎn)為h,F(xiàn)h為在h時(shí)刻得到的信息集合,yh+1為向前一步預(yù)測:

■■(1)=E(y■|F■)=?漬■+■φ■y■-■θ■ε■

相應(yīng)的預(yù)測誤差為eh(1)=yh+1-■■(1)=ε■。向前1步的預(yù)測方差為var[eh(1)]=σ2ε。

對向前l(fā)步預(yù)測,■■(l)=E(y■|F■)=?漬■+■φ■■■(l-i)-■θ■ε■(l-i)。

向前l(fā)步預(yù)測可通過遞歸運(yùn)算得到。向前l(fā)步的預(yù)測誤差為eh(l)=yh+l-■■(l)。

(二)ADF檢驗(yàn)[5]

以時(shí)間序列為依據(jù)的經(jīng)驗(yàn)分析預(yù)測都假定時(shí)間序列是平穩(wěn)的。即是說,如果隨機(jī)序列的均值和方差在時(shí)間上都是常數(shù),且任何兩時(shí)期間的協(xié)方差僅依賴于這兩時(shí)期間的距離或滯后,而不依賴于計(jì)算協(xié)方差的實(shí)際時(shí)間,我們就稱其為平穩(wěn)。若原始序列平穩(wěn),稱之為I(0)過程。若原始序列不平穩(wěn),而經(jīng)過一階差分后平穩(wěn),則稱序列是一階單整的,簡稱I(1)。平穩(wěn)性常用的檢驗(yàn)方法是單位根檢驗(yàn)(UNIT ROOT TEST)。通常以下列形式作ADF單位根檢驗(yàn):

Δy=β■+β■t+δy■+α■■Δy■+ε■

其中t為時(shí)間或趨勢變量,Δy■為滯后差分項(xiàng)。

某具體數(shù)據(jù)包含多少個(gè)滯后差分項(xiàng),要根據(jù)經(jīng)驗(yàn)決定,尤其對具有自相關(guān)特征的金融時(shí)間序列,一般應(yīng)包含足夠的滯后項(xiàng)以保證上面方程中的誤差項(xiàng)在序列上是相互獨(dú)立的。

(三)實(shí)證分析

1.數(shù)據(jù)的選擇。由于時(shí)間序列模型要求數(shù)據(jù)保持一致性,即其內(nèi)在生成機(jī)制是一致的,所以2005年到2010年的人民幣匯率數(shù)據(jù)并不能完全采用。特別是金融危機(jī)期間,我國暫時(shí)放慢了對匯率改革的進(jìn)程,人民幣匯率受到管制,這一時(shí)期的數(shù)據(jù)基本不發(fā)生變化,對其進(jìn)行研究也沒太多意義。因此,本文的研究選取的數(shù)據(jù)是2010年7月1日至2013年11月30日美元兌換人民幣的176個(gè)周平均數(shù)據(jù),根據(jù)實(shí)證研究需要,將樣本數(shù)據(jù)分割為兩部分:2010年7月1日至2013年6月30日的前154個(gè)周平均數(shù)據(jù)作為樣本內(nèi)研究區(qū)間,余下的22個(gè)數(shù)據(jù)作為樣本外預(yù)測區(qū)間,樣本內(nèi)期間的數(shù)據(jù)用來估計(jì)預(yù)測模型的參數(shù),樣本外期間的則用來檢驗(yàn)?zāi)P偷念A(yù)測效果。數(shù)據(jù)來源于國家外匯管理局(http://www.safe.gov.cn/)。

在進(jìn)行匯率預(yù)測時(shí),研究所需的數(shù)據(jù)資料可以使用每日數(shù)據(jù)、每周資料或每月數(shù)據(jù),查閱相關(guān)文獻(xiàn),利用月平均數(shù)據(jù)的較多,這里,本文選擇利用周平均數(shù)據(jù)對匯率預(yù)測模型進(jìn)行深入探討。

圖1 2010年7月~2013年6月美元兌換人民幣周平均匯率走勢圖

通過匯率走勢圖,直觀上可得在這一區(qū)間內(nèi)人民幣在逐漸升值,且趨勢明顯,數(shù)據(jù)基本符合時(shí)間序列模型對數(shù)據(jù)的要求。從圖中可以看到人民幣匯率有比較明顯的時(shí)間趨勢,應(yīng)該是非平穩(wěn)序列。后面會(huì)進(jìn)一步說明。下表是數(shù)據(jù)序列的基本統(tǒng)計(jì)量:

表1 人民幣匯率序列基本統(tǒng)計(jì)量表

如果序列是對稱分布,則偏度應(yīng)為0,而該序列偏度為0.778776,說明序列的分布是有偏的且向右偏斜。另外,已知正態(tài)分布的峰度等于3,而表3-1中峰度為2.413661,說明該序列不服從正態(tài)分布。

2.模型識(shí)別。建立ARIMA模型,必須先對模型進(jìn)行識(shí)別,故先對匯率的時(shí)間序列的自相關(guān)和偏自相關(guān)系數(shù)圖進(jìn)行分析。

圖2 人民幣對美元匯率序列相關(guān)圖

從圖中看出,人民幣對美元匯率的時(shí)間序列是不平穩(wěn)的。只有平穩(wěn)的時(shí)間序列才能建立ARIMA模型,因此經(jīng)過對序列差分,其序列圖如圖3所示,并進(jìn)行ADF單位根檢驗(yàn),檢驗(yàn)結(jié)果如表2所示。

圖3 2010年7月~2013年6月美元兌換人民幣周平均匯率一階差分走勢圖

表2 人民幣對美元匯率ADF檢驗(yàn)表

從上表可知:人民幣匯率序列經(jīng)一階差分后ADF統(tǒng)計(jì)量為-8.765482,比1%、5%和10%置信水平上的臨界值小,所以一階差分序列表現(xiàn)為平穩(wěn)序列。

原匯率序列經(jīng)過一階差分后為平穩(wěn)序列,此時(shí),可以考慮對其建立相關(guān)的模型。根據(jù)自相關(guān)與偏自相關(guān)系數(shù)的性質(zhì),從圖4中,由一階差分序列相關(guān)圖中,自相關(guān)系數(shù)在k=1后迅速趨于0,但k=2時(shí)又與0有差異,因此,q值取1或2。偏自相關(guān)系數(shù)在k=2處顯著不為0,p值取2。故差分后序列可以建立ARMA(2,1)或ARMA(2,2)模型。由于一階差分后序列為平穩(wěn)序列,確定d值為1,實(shí)際上也就是采用ARIMA(2,1,1)和ARIMA(2,1,2)模型進(jìn)行參數(shù)估計(jì)。

圖4 人民幣對美元匯率一階差分序列相關(guān)圖

3.參數(shù)估計(jì)。在確定模型可能為ARIMA(2,1,1)和ARIMA(2,1,2)后,分別運(yùn)用回歸方程進(jìn)行參數(shù)的估計(jì)。估計(jì)結(jié)果如下面兩表所示:

表3 ARIMA(2,1,1)模型參數(shù)估計(jì)與相關(guān)檢驗(yàn)結(jié)果

表4 ARIMA(2,1,2)模型參數(shù)估計(jì)與相關(guān)檢驗(yàn)結(jié)果

上面兩表中各滯后多項(xiàng)式的倒數(shù)根都在單位圓內(nèi),說明過程既是平穩(wěn)的,也是可逆的。但從模型的估計(jì)結(jié)果看,模型ARIMA(2,1,1)的各項(xiàng)系數(shù)除截距項(xiàng)C外均不顯著,模型ARIMA(2,1,2)各項(xiàng)系數(shù)顯著性均較高,兩模型的AIC和SIC值又十分接近,故模型ARIMA(2,1,2)的估計(jì)結(jié)果是較好的。因此,我們得到ARIMA(2,1,2)預(yù)測模型表達(dá)式為:

yt=-0.399912-0.479324yt-1-0.510567yt-2+εt+0.690476εt-1+0.538203εt-2

(0.0002) (0.0390) (0.0089) (0.0042) (0.0010)

4.模型預(yù)測。在Eviews中有兩種預(yù)測方式:“Dynamic”和“Static”,前者是根據(jù)所選擇的一定的估計(jì)區(qū)間進(jìn)行多步向前預(yù)測,后者是只滾動(dòng)的進(jìn)行向前一步預(yù)測,即每預(yù)測一次,用真實(shí)值代替預(yù)測值,加入到估計(jì)區(qū)間,再進(jìn)行向前一步預(yù)測。

為檢驗(yàn)ARIMA(2,1,2)模型的預(yù)測效果,分別用兩種預(yù)測方式對2013年7月1日至11月30日人民幣匯率差分序列進(jìn)行試預(yù)測,得到圖5和圖6所示的預(yù)測結(jié)果。圖中實(shí)線代表的是差分序列的預(yù)測值,兩條虛線則提供了2倍標(biāo)準(zhǔn)差的置信區(qū)間。圖的右邊列出的是評價(jià)預(yù)測的一些標(biāo)準(zhǔn),如平均預(yù)測誤差平方和的平方根(RMSE),Theil不相等系數(shù)及其分解。

圖5 ARIMA(2,1,2)模型Dynamic預(yù)測方式結(jié)果

圖6 ARIMA(2,1,2)模型Static預(yù)測方式結(jié)果

從上面兩圖中可以看到,“Static”方法得到的預(yù)測值波動(dòng)性較大;同時(shí),方差比例的下降和協(xié)方差比例的上升也較好的模擬了實(shí)際序列的波動(dòng),Theil不相等系數(shù)也有所減小,所以用“Static”預(yù)測方式較為理想。

將原匯率預(yù)測值與實(shí)際值進(jìn)行比較,得表5,可看出預(yù)測值與實(shí)際值之間的誤差較小,除個(gè)別誤差達(dá)到1個(gè)點(diǎn)以上,其余數(shù)據(jù)的誤差都在1以內(nèi),說明模型對未來匯率的預(yù)測準(zhǔn)確度較高。

表5 ARIMA(2,1,2)模的型匯率預(yù)測結(jié)果

圖7 ARIMA(2,1,2)模型預(yù)測結(jié)果圖

從圖7(藍(lán)色為預(yù)測值,紅線為實(shí)際值)中也可看出,該模型對匯率的未來走勢預(yù)測結(jié)果令人滿意,在大部分時(shí)候能夠準(zhǔn)確判斷匯率波動(dòng)的方向,同時(shí),波動(dòng)幅度在一定程度上反映真實(shí)波動(dòng)幅度變化。

三、結(jié)論

時(shí)間序列分析是根據(jù)時(shí)間序列的歷史數(shù)據(jù),得出有關(guān)過去行為的結(jié)論,從而對未來數(shù)據(jù)進(jìn)行預(yù)測,也即是說通過數(shù)據(jù)過去的波動(dòng)特征來推斷數(shù)據(jù)未來的變化趨勢。建立預(yù)測模型要保證時(shí)間序列是平穩(wěn)的.所以建模之前要先進(jìn)行單位根檢驗(yàn),以平穩(wěn)的時(shí)間序列建立預(yù)測模型.基于模型參數(shù)的選擇標(biāo)準(zhǔn),為使預(yù)測結(jié)果較好,我們應(yīng)采取較好的模型預(yù)測.根據(jù)模型擬合趨勢,未來人民幣匯率的升值壓力還會(huì)進(jìn)一步加大,建議應(yīng)采取的措施:一是制定合理的匯率制度;二是調(diào)控國內(nèi)外宏觀經(jīng)濟(jì)和金融環(huán)境。

參考文獻(xiàn)

[1]戴曉楓,肖慶憲.時(shí)間序列分析方法及人民幣匯率預(yù)測的應(yīng)用研究[J].上海理工大學(xué)學(xué)報(bào),2005,200093:342-345.

[2]張奕韜.基于ARIMA模型的外匯匯率時(shí)間序列預(yù)測研究[J].華東交通大學(xué)學(xué)報(bào),2009.

[3]閆海峰,謝莉莉.基于GARCH-M模型的人民幣匯率預(yù)測[J].南京財(cái)經(jīng)大學(xué)金融學(xué)院,2009,210046:41-44.

[4]許少強(qiáng),李亞敏.參考“一籃子”貨幣的人民幣匯率預(yù)測[J].世界經(jīng)濟(jì)學(xué)報(bào),2007(3):32-35.

[5]易丹輝.數(shù)據(jù)分析與Eviews應(yīng)用[M].北京:中國統(tǒng)計(jì)出版社,2002:1-55.

[6][美] George E P,Gwilym M,Gregory C.時(shí)間序列分析預(yù)測與控制[M].顧嵐,主譯.北京:中國統(tǒng)計(jì)出版社,1997:16-19.

[7]范正綺,王祥云.ARIMA模型在匯率時(shí)間數(shù)列預(yù)測中的應(yīng)用[J].上海金融,1997,1997(3):28-29.

[8]Fang-Mei Tseng,F(xiàn)uzzy ARIMA Model for Forecasting the Foreign Exchange Market[J].Fuzzy Sets and Systems,2001(11):9—19.

基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(11271117)。

作者簡介:魏紅燕(1986-),女,河南駐馬店人,湖南大學(xué)數(shù)學(xué)與計(jì)量經(jīng)濟(jì)學(xué)院碩士研究生,研究方向:數(shù)據(jù)統(tǒng)計(jì)預(yù)測、匯率預(yù)測;孟純軍(1968-),女,漢族,湖南長沙人,湖南大學(xué)副教授。

圖2 人民幣對美元匯率序列相關(guān)圖

從圖中看出,人民幣對美元匯率的時(shí)間序列是不平穩(wěn)的。只有平穩(wěn)的時(shí)間序列才能建立ARIMA模型,因此經(jīng)過對序列差分,其序列圖如圖3所示,并進(jìn)行ADF單位根檢驗(yàn),檢驗(yàn)結(jié)果如表2所示。

圖3 2010年7月~2013年6月美元兌換人民幣周平均匯率一階差分走勢圖

表2 人民幣對美元匯率ADF檢驗(yàn)表

從上表可知:人民幣匯率序列經(jīng)一階差分后ADF統(tǒng)計(jì)量為-8.765482,比1%、5%和10%置信水平上的臨界值小,所以一階差分序列表現(xiàn)為平穩(wěn)序列。

原匯率序列經(jīng)過一階差分后為平穩(wěn)序列,此時(shí),可以考慮對其建立相關(guān)的模型。根據(jù)自相關(guān)與偏自相關(guān)系數(shù)的性質(zhì),從圖4中,由一階差分序列相關(guān)圖中,自相關(guān)系數(shù)在k=1后迅速趨于0,但k=2時(shí)又與0有差異,因此,q值取1或2。偏自相關(guān)系數(shù)在k=2處顯著不為0,p值取2。故差分后序列可以建立ARMA(2,1)或ARMA(2,2)模型。由于一階差分后序列為平穩(wěn)序列,確定d值為1,實(shí)際上也就是采用ARIMA(2,1,1)和ARIMA(2,1,2)模型進(jìn)行參數(shù)估計(jì)。

圖4 人民幣對美元匯率一階差分序列相關(guān)圖

3.參數(shù)估計(jì)。在確定模型可能為ARIMA(2,1,1)和ARIMA(2,1,2)后,分別運(yùn)用回歸方程進(jìn)行參數(shù)的估計(jì)。估計(jì)結(jié)果如下面兩表所示:

表3 ARIMA(2,1,1)模型參數(shù)估計(jì)與相關(guān)檢驗(yàn)結(jié)果

表4 ARIMA(2,1,2)模型參數(shù)估計(jì)與相關(guān)檢驗(yàn)結(jié)果

上面兩表中各滯后多項(xiàng)式的倒數(shù)根都在單位圓內(nèi),說明過程既是平穩(wěn)的,也是可逆的。但從模型的估計(jì)結(jié)果看,模型ARIMA(2,1,1)的各項(xiàng)系數(shù)除截距項(xiàng)C外均不顯著,模型ARIMA(2,1,2)各項(xiàng)系數(shù)顯著性均較高,兩模型的AIC和SIC值又十分接近,故模型ARIMA(2,1,2)的估計(jì)結(jié)果是較好的。因此,我們得到ARIMA(2,1,2)預(yù)測模型表達(dá)式為:

yt=-0.399912-0.479324yt-1-0.510567yt-2+εt+0.690476εt-1+0.538203εt-2

(0.0002) (0.0390) (0.0089) (0.0042) (0.0010)

4.模型預(yù)測。在Eviews中有兩種預(yù)測方式:“Dynamic”和“Static”,前者是根據(jù)所選擇的一定的估計(jì)區(qū)間進(jìn)行多步向前預(yù)測,后者是只滾動(dòng)的進(jìn)行向前一步預(yù)測,即每預(yù)測一次,用真實(shí)值代替預(yù)測值,加入到估計(jì)區(qū)間,再進(jìn)行向前一步預(yù)測。

為檢驗(yàn)ARIMA(2,1,2)模型的預(yù)測效果,分別用兩種預(yù)測方式對2013年7月1日至11月30日人民幣匯率差分序列進(jìn)行試預(yù)測,得到圖5和圖6所示的預(yù)測結(jié)果。圖中實(shí)線代表的是差分序列的預(yù)測值,兩條虛線則提供了2倍標(biāo)準(zhǔn)差的置信區(qū)間。圖的右邊列出的是評價(jià)預(yù)測的一些標(biāo)準(zhǔn),如平均預(yù)測誤差平方和的平方根(RMSE),Theil不相等系數(shù)及其分解。

圖5 ARIMA(2,1,2)模型Dynamic預(yù)測方式結(jié)果

圖6 ARIMA(2,1,2)模型Static預(yù)測方式結(jié)果

從上面兩圖中可以看到,“Static”方法得到的預(yù)測值波動(dòng)性較大;同時(shí),方差比例的下降和協(xié)方差比例的上升也較好的模擬了實(shí)際序列的波動(dòng),Theil不相等系數(shù)也有所減小,所以用“Static”預(yù)測方式較為理想。

將原匯率預(yù)測值與實(shí)際值進(jìn)行比較,得表5,可看出預(yù)測值與實(shí)際值之間的誤差較小,除個(gè)別誤差達(dá)到1個(gè)點(diǎn)以上,其余數(shù)據(jù)的誤差都在1以內(nèi),說明模型對未來匯率的預(yù)測準(zhǔn)確度較高。

表5 ARIMA(2,1,2)模的型匯率預(yù)測結(jié)果

圖7 ARIMA(2,1,2)模型預(yù)測結(jié)果圖

從圖7(藍(lán)色為預(yù)測值,紅線為實(shí)際值)中也可看出,該模型對匯率的未來走勢預(yù)測結(jié)果令人滿意,在大部分時(shí)候能夠準(zhǔn)確判斷匯率波動(dòng)的方向,同時(shí),波動(dòng)幅度在一定程度上反映真實(shí)波動(dòng)幅度變化。

三、結(jié)論

時(shí)間序列分析是根據(jù)時(shí)間序列的歷史數(shù)據(jù),得出有關(guān)過去行為的結(jié)論,從而對未來數(shù)據(jù)進(jìn)行預(yù)測,也即是說通過數(shù)據(jù)過去的波動(dòng)特征來推斷數(shù)據(jù)未來的變化趨勢。建立預(yù)測模型要保證時(shí)間序列是平穩(wěn)的.所以建模之前要先進(jìn)行單位根檢驗(yàn),以平穩(wěn)的時(shí)間序列建立預(yù)測模型.基于模型參數(shù)的選擇標(biāo)準(zhǔn),為使預(yù)測結(jié)果較好,我們應(yīng)采取較好的模型預(yù)測.根據(jù)模型擬合趨勢,未來人民幣匯率的升值壓力還會(huì)進(jìn)一步加大,建議應(yīng)采取的措施:一是制定合理的匯率制度;二是調(diào)控國內(nèi)外宏觀經(jīng)濟(jì)和金融環(huán)境。

參考文獻(xiàn)

[1]戴曉楓,肖慶憲.時(shí)間序列分析方法及人民幣匯率預(yù)測的應(yīng)用研究[J].上海理工大學(xué)學(xué)報(bào),2005,200093:342-345.

[2]張奕韜.基于ARIMA模型的外匯匯率時(shí)間序列預(yù)測研究[J].華東交通大學(xué)學(xué)報(bào),2009.

[3]閆海峰,謝莉莉.基于GARCH-M模型的人民幣匯率預(yù)測[J].南京財(cái)經(jīng)大學(xué)金融學(xué)院,2009,210046:41-44.

[4]許少強(qiáng),李亞敏.參考“一籃子”貨幣的人民幣匯率預(yù)測[J].世界經(jīng)濟(jì)學(xué)報(bào),2007(3):32-35.

[5]易丹輝.數(shù)據(jù)分析與Eviews應(yīng)用[M].北京:中國統(tǒng)計(jì)出版社,2002:1-55.

[6][美] George E P,Gwilym M,Gregory C.時(shí)間序列分析預(yù)測與控制[M].顧嵐,主譯.北京:中國統(tǒng)計(jì)出版社,1997:16-19.

[7]范正綺,王祥云.ARIMA模型在匯率時(shí)間數(shù)列預(yù)測中的應(yīng)用[J].上海金融,1997,1997(3):28-29.

[8]Fang-Mei Tseng,F(xiàn)uzzy ARIMA Model for Forecasting the Foreign Exchange Market[J].Fuzzy Sets and Systems,2001(11):9—19.

基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(11271117)。

作者簡介:魏紅燕(1986-),女,河南駐馬店人,湖南大學(xué)數(shù)學(xué)與計(jì)量經(jīng)濟(jì)學(xué)院碩士研究生,研究方向:數(shù)據(jù)統(tǒng)計(jì)預(yù)測、匯率預(yù)測;孟純軍(1968-),女,漢族,湖南長沙人,湖南大學(xué)副教授。

圖2 人民幣對美元匯率序列相關(guān)圖

從圖中看出,人民幣對美元匯率的時(shí)間序列是不平穩(wěn)的。只有平穩(wěn)的時(shí)間序列才能建立ARIMA模型,因此經(jīng)過對序列差分,其序列圖如圖3所示,并進(jìn)行ADF單位根檢驗(yàn),檢驗(yàn)結(jié)果如表2所示。

圖3 2010年7月~2013年6月美元兌換人民幣周平均匯率一階差分走勢圖

表2 人民幣對美元匯率ADF檢驗(yàn)表

從上表可知:人民幣匯率序列經(jīng)一階差分后ADF統(tǒng)計(jì)量為-8.765482,比1%、5%和10%置信水平上的臨界值小,所以一階差分序列表現(xiàn)為平穩(wěn)序列。

原匯率序列經(jīng)過一階差分后為平穩(wěn)序列,此時(shí),可以考慮對其建立相關(guān)的模型。根據(jù)自相關(guān)與偏自相關(guān)系數(shù)的性質(zhì),從圖4中,由一階差分序列相關(guān)圖中,自相關(guān)系數(shù)在k=1后迅速趨于0,但k=2時(shí)又與0有差異,因此,q值取1或2。偏自相關(guān)系數(shù)在k=2處顯著不為0,p值取2。故差分后序列可以建立ARMA(2,1)或ARMA(2,2)模型。由于一階差分后序列為平穩(wěn)序列,確定d值為1,實(shí)際上也就是采用ARIMA(2,1,1)和ARIMA(2,1,2)模型進(jìn)行參數(shù)估計(jì)。

圖4 人民幣對美元匯率一階差分序列相關(guān)圖

3.參數(shù)估計(jì)。在確定模型可能為ARIMA(2,1,1)和ARIMA(2,1,2)后,分別運(yùn)用回歸方程進(jìn)行參數(shù)的估計(jì)。估計(jì)結(jié)果如下面兩表所示:

表3 ARIMA(2,1,1)模型參數(shù)估計(jì)與相關(guān)檢驗(yàn)結(jié)果

表4 ARIMA(2,1,2)模型參數(shù)估計(jì)與相關(guān)檢驗(yàn)結(jié)果

上面兩表中各滯后多項(xiàng)式的倒數(shù)根都在單位圓內(nèi),說明過程既是平穩(wěn)的,也是可逆的。但從模型的估計(jì)結(jié)果看,模型ARIMA(2,1,1)的各項(xiàng)系數(shù)除截距項(xiàng)C外均不顯著,模型ARIMA(2,1,2)各項(xiàng)系數(shù)顯著性均較高,兩模型的AIC和SIC值又十分接近,故模型ARIMA(2,1,2)的估計(jì)結(jié)果是較好的。因此,我們得到ARIMA(2,1,2)預(yù)測模型表達(dá)式為:

yt=-0.399912-0.479324yt-1-0.510567yt-2+εt+0.690476εt-1+0.538203εt-2

(0.0002) (0.0390) (0.0089) (0.0042) (0.0010)

4.模型預(yù)測。在Eviews中有兩種預(yù)測方式:“Dynamic”和“Static”,前者是根據(jù)所選擇的一定的估計(jì)區(qū)間進(jìn)行多步向前預(yù)測,后者是只滾動(dòng)的進(jìn)行向前一步預(yù)測,即每預(yù)測一次,用真實(shí)值代替預(yù)測值,加入到估計(jì)區(qū)間,再進(jìn)行向前一步預(yù)測。

為檢驗(yàn)ARIMA(2,1,2)模型的預(yù)測效果,分別用兩種預(yù)測方式對2013年7月1日至11月30日人民幣匯率差分序列進(jìn)行試預(yù)測,得到圖5和圖6所示的預(yù)測結(jié)果。圖中實(shí)線代表的是差分序列的預(yù)測值,兩條虛線則提供了2倍標(biāo)準(zhǔn)差的置信區(qū)間。圖的右邊列出的是評價(jià)預(yù)測的一些標(biāo)準(zhǔn),如平均預(yù)測誤差平方和的平方根(RMSE),Theil不相等系數(shù)及其分解。

圖5 ARIMA(2,1,2)模型Dynamic預(yù)測方式結(jié)果

圖6 ARIMA(2,1,2)模型Static預(yù)測方式結(jié)果

從上面兩圖中可以看到,“Static”方法得到的預(yù)測值波動(dòng)性較大;同時(shí),方差比例的下降和協(xié)方差比例的上升也較好的模擬了實(shí)際序列的波動(dòng),Theil不相等系數(shù)也有所減小,所以用“Static”預(yù)測方式較為理想。

將原匯率預(yù)測值與實(shí)際值進(jìn)行比較,得表5,可看出預(yù)測值與實(shí)際值之間的誤差較小,除個(gè)別誤差達(dá)到1個(gè)點(diǎn)以上,其余數(shù)據(jù)的誤差都在1以內(nèi),說明模型對未來匯率的預(yù)測準(zhǔn)確度較高。

表5 ARIMA(2,1,2)模的型匯率預(yù)測結(jié)果

圖7 ARIMA(2,1,2)模型預(yù)測結(jié)果圖

從圖7(藍(lán)色為預(yù)測值,紅線為實(shí)際值)中也可看出,該模型對匯率的未來走勢預(yù)測結(jié)果令人滿意,在大部分時(shí)候能夠準(zhǔn)確判斷匯率波動(dòng)的方向,同時(shí),波動(dòng)幅度在一定程度上反映真實(shí)波動(dòng)幅度變化。

三、結(jié)論

時(shí)間序列分析是根據(jù)時(shí)間序列的歷史數(shù)據(jù),得出有關(guān)過去行為的結(jié)論,從而對未來數(shù)據(jù)進(jìn)行預(yù)測,也即是說通過數(shù)據(jù)過去的波動(dòng)特征來推斷數(shù)據(jù)未來的變化趨勢。建立預(yù)測模型要保證時(shí)間序列是平穩(wěn)的.所以建模之前要先進(jìn)行單位根檢驗(yàn),以平穩(wěn)的時(shí)間序列建立預(yù)測模型.基于模型參數(shù)的選擇標(biāo)準(zhǔn),為使預(yù)測結(jié)果較好,我們應(yīng)采取較好的模型預(yù)測.根據(jù)模型擬合趨勢,未來人民幣匯率的升值壓力還會(huì)進(jìn)一步加大,建議應(yīng)采取的措施:一是制定合理的匯率制度;二是調(diào)控國內(nèi)外宏觀經(jīng)濟(jì)和金融環(huán)境。

參考文獻(xiàn)

[1]戴曉楓,肖慶憲.時(shí)間序列分析方法及人民幣匯率預(yù)測的應(yīng)用研究[J].上海理工大學(xué)學(xué)報(bào),2005,200093:342-345.

[2]張奕韜.基于ARIMA模型的外匯匯率時(shí)間序列預(yù)測研究[J].華東交通大學(xué)學(xué)報(bào),2009.

[3]閆海峰,謝莉莉.基于GARCH-M模型的人民幣匯率預(yù)測[J].南京財(cái)經(jīng)大學(xué)金融學(xué)院,2009,210046:41-44.

[4]許少強(qiáng),李亞敏.參考“一籃子”貨幣的人民幣匯率預(yù)測[J].世界經(jīng)濟(jì)學(xué)報(bào),2007(3):32-35.

[5]易丹輝.數(shù)據(jù)分析與Eviews應(yīng)用[M].北京:中國統(tǒng)計(jì)出版社,2002:1-55.

[6][美] George E P,Gwilym M,Gregory C.時(shí)間序列分析預(yù)測與控制[M].顧嵐,主譯.北京:中國統(tǒng)計(jì)出版社,1997:16-19.

[7]范正綺,王祥云.ARIMA模型在匯率時(shí)間數(shù)列預(yù)測中的應(yīng)用[J].上海金融,1997,1997(3):28-29.

[8]Fang-Mei Tseng,F(xiàn)uzzy ARIMA Model for Forecasting the Foreign Exchange Market[J].Fuzzy Sets and Systems,2001(11):9—19.

基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(11271117)。

作者簡介:魏紅燕(1986-),女,河南駐馬店人,湖南大學(xué)數(shù)學(xué)與計(jì)量經(jīng)濟(jì)學(xué)院碩士研究生,研究方向:數(shù)據(jù)統(tǒng)計(jì)預(yù)測、匯率預(yù)測;孟純軍(1968-),女,漢族,湖南長沙人,湖南大學(xué)副教授。

主站蜘蛛池模板: 91尤物国产尤物福利在线| 欧美激情网址| 在线观看亚洲成人| 日韩中文字幕免费在线观看| 国产人人射| 亚洲AV无码乱码在线观看代蜜桃| 国产swag在线观看| 精品国产91爱| 色综合婷婷| 91青青视频| 成人午夜视频免费看欧美| 深爱婷婷激情网| 日韩无码真实干出血视频| 亚洲国产日韩一区| 亚洲va在线∨a天堂va欧美va| 91在线无码精品秘九色APP| 亚洲丝袜第一页| 日韩欧美视频第一区在线观看| 欧美激情视频一区二区三区免费| 日本精品一在线观看视频| 在线观看国产黄色| 伊人久久久大香线蕉综合直播| 国产微拍一区二区三区四区| 国产男女免费视频| 亚洲欧洲美色一区二区三区| 国产www网站| 好吊色妇女免费视频免费| 久久一级电影| 爱色欧美亚洲综合图区| 久久99久久无码毛片一区二区| 午夜一级做a爰片久久毛片| 国产精女同一区二区三区久| 精品国产三级在线观看| 亚洲精品在线91| 91毛片网| 亚洲第一视频网站| 久久黄色一级片| 91破解版在线亚洲| 久久久无码人妻精品无码| 亚洲欧美激情小说另类| 久久精品只有这里有| 亚洲综合中文字幕国产精品欧美| 亚洲人成影院在线观看| 国产人妖视频一区在线观看| 欧美不卡视频在线| 国产精品jizz在线观看软件| 国产色婷婷| 久久国产黑丝袜视频| 2024av在线无码中文最新| 国产精品30p| 欧美精品1区| 亚洲精品男人天堂| 国产黑丝视频在线观看| 国产精品性| 激情爆乳一区二区| 色噜噜狠狠色综合网图区| 国产主播在线一区| 啪啪啪亚洲无码| 欧美成人h精品网站| 国产91熟女高潮一区二区| 亚洲成人免费看| 婷婷在线网站| 中文字幕亚洲精品2页| 一级毛片在线免费看| 成人午夜视频免费看欧美| 玖玖精品视频在线观看| 99视频精品全国免费品| 国产视频资源在线观看| 国模视频一区二区| 亚洲国内精品自在自线官| 国产美女在线观看| 亚洲男人在线| 亚洲欧美不卡视频| 国产产在线精品亚洲aavv| 欧美三级日韩三级| 在线中文字幕网| 无码精品国产VA在线观看DVD | 国产乱人乱偷精品视频a人人澡| 婷婷色婷婷| 免费看美女毛片| 综合久久五月天| 亚洲欧美天堂网|