孫彩麗, 薛 萐,2, 劉國彬, 丁少男
(1 黃土高原土壤侵蝕與旱地農業國家重點實驗室,西北農林科技大學資源環境學院,陜西楊凌 712100; 2 中國科學院水利部水土保持研究所, 陜西楊凌 712100)
土壤顆粒組成和土壤微團聚體組成是研究土壤質地和結構的基本物理屬性[1-2]。土壤顆粒組成影響土壤的水力特性、 肥力狀況,并與土壤侵蝕和退化直接相關,是重要的土壤物理特性之一[3],許多研究用土壤顆粒體積分形維數來反映土壤結構、 屬性和肥力等[4-6]。土壤團聚體是土壤肥力的基礎,其大小、 含量及穩定性直接反映土壤結構性的優劣并成為評價土壤質量的重要指標[7]。有學者提出,土壤有機質和土壤結構相互作用緊密,有機質與礦物顆粒形成穩定的團聚體,而穩定團聚體又可對礦化的有機質進行物理保護[8-9]。土壤團聚狀況可用團聚度和分散系數來衡量,土壤團聚度既受土壤團聚體含量的影響,又受土壤粘粒含量的影響[10],土壤分散率取決于土粒與水的親和力和膠結力,在一定程度上反映土壤顆粒間的作用力[11]。

土壤顆粒組成及微團聚體分布與黃土肥力關系密切[23],本研究在土壤顆粒組成、 微團聚體組成和有機質等數據的基礎上,分別研究了土壤顆粒體積分形維數、 土壤團聚度、 土壤分散率,以期從土壤結構和肥力角度綜合反映長期不同施肥處理對黃土區土壤質量的影響,為黃土高原合理培肥、 農業和生態環境可持續發展提供科學依據。

試驗從1997年開始,已持續15年,小區面積14 m2,3次重復,不同施肥處理小區隨機排列,且15年來作物栽培及管理措施一致。各試驗處理施用的肥料量如表1。
試驗地為玉米-玉米-黃豆輪作,2012年4月29日種玉米(品種為強盛101),播種量為52.5 kg/hm2,每公頃留苗51000株,每區留苗72株(每區4行,每行18株)。玉米播種前施入全部磷肥和有機肥,并施入部分氮肥(42.36 kg/hm2)作種肥,6月29日拔節期和7月29日喇叭口期分別追施氮肥(84.79 kg/hm2),9月23日收獲。有機肥用冬羊糞,氮肥為尿素,磷肥為過磷酸鈣,玉米收獲后用土鉆法在處理小區采集土樣,分0—20 cm,20—40 cm兩層,每個小區取3個樣點,混合均勻后帶回實驗室,自然風干后剔除大的植物殘體和石塊,一部分土樣進行顆粒組成和微團聚體組成測定,另一部分土樣過0.25 mm篩后進行有機質的測定。

表1 長期定位試驗各處理施肥量(kg/hm2)
有機質含量采用K2Cr2O7氧化-外加熱法測定,并換算成有機碳含量。土壤顆粒和微團聚體組成采用英國馬爾文公司的MS2000型激光粒度儀測定。土壤顆粒體積分形維數采用王國梁等[4]提出的公式(1)計算,土壤團聚度和分散率分別采用公式(2)和(3)計算。
(1)
式中:r為土壤粒徑;V為粒徑大于或小于R的全部土壤顆??傮w積;VT為土壤顆粒總體積;λV在數值上等于最大粒徑數RL;D為土壤顆粒體積分形維數。
(2)
式中:Y1為土壤團聚度;x1為大于0.05 mm微團聚體測量值;x2為大于0.05 mm土壤顆粒組成測量值。
(3)
式中:Y2為土壤分散率;x3為小于0.05 mm微團聚體測量值;x4為小于0.05 mm顆粒組成測量值。
所測數據采用Microsoft Excel 2007和SPSS 18.0軟件進行統計分析,多重比較采用 Duncan法,采用Origin 9.0作圖。


圖1 不同施肥處理土壤顆粒組成Fig.1 Particle distribution of soil under different fertilization treatments

圖2 不同施肥處理土壤微團聚體組成Fig.2 Microaggregate distribution of soil under different fertilization treatmets




圖3 0—20 cm和20—40 cm土層體積分形維數與不同粒徑土壤顆粒體積百分含量的關系Fig.3 The correlation between soil volume fractal dimension and the volume percentage of soil particles in both 0-20 cm and 20-40 cm soil layers



表2 0—20和20—40 cm土層土壤團聚度、 分散率、 分形維數及有機碳含量


表3 土壤顆粒組成與團聚度、 分散率、 有機碳含量及分形維數之間相關性分析





表4 土壤微團聚體組成與團聚度、 分散率、 分形維數及有機碳含量之間相關性分析
研究表明,土壤分形維數能夠反映土壤結構、 屬性及肥力[37-38]。本研究中不同施肥處理土壤顆粒體積分形維數變化不顯著,但MNP處理的土壤顆粒體積分形維數最小,CK處理的最大,說明有機無機肥配施對改善土壤結構,提高土壤質量意義重大。土壤分散率反映土壤團聚狀況,其值越大,土壤結構性越差[10-11]。本研究中NP處理的土壤分散率最大,但與BL沒有顯著差異,M處理的最小且顯著低于BL,這可能歸因于土壤中有機質的含量,施入有機肥直接提高了土壤有機質含量,改善了土壤結構; NP處理加快了土壤中有機質的分解[27],BL處理沒有施入有機肥,地上植物殘體歸還到土壤中的有機質也很少,不利于土壤結構的改良。



3)氮磷配施處理的土壤分散率最大,有機肥處理最小; 不同施肥處理土壤顆粒體積分形維數差異不顯著,但有機肥與氮磷肥配施處理的最小,對照處理最大。

參考文獻:
[1] 冷延慧, 汪景寬, 李雙異. 長期施肥對黑土團聚體分布和碳儲量變化的影響[J]. 生態學雜志, 2008, 27(12): 2171-2177.
Leng Y H, Wang J K, Li S Y. Effects of long-term fertilization on aggregates size distribution and carbon stock in black soil[J]. Chinese Journal of Ecology, 2008, 27(12): 2171-2177.
[2] 張玉斌, 曹寧, 許曉鴻, 蘇曉光. 吉林省低山丘陵區水土保持措施對土壤顆粒組成和速效養分影響分析[J]. 中國農學通報, 2009, 25(20): 287-291.
Zhang Y B, Cao N, Xu X H, Su X G. The analysis of soil particle composition and available nutrient under different soil and water conservation measures inJilin low mountain and mound area[J]. Chinese Agricultural Science Bulletin, 2009, 25(20): 287-291.
[3] 董莉麗, 鄭粉莉. 陜北黃土丘陵溝壑區土壤粒徑分形特征[J]. 中國水土保持科學, 2009, 7(2): 35-41.
Dong L l, Zheng F L. Fractal characteristics of soil particles in the Hilly-gully Regions of the Loess Plateau, North of Shaanxi, China[J]. Science of Soil and Water Conservation, 2009, 7(2): 35-41.
[4] 王國梁, 周生路, 趙其國. 土壤顆粒的體積分形維數及其在土地利用中的應用[J]. 土壤學報, 2005, 42(4): 545-550.
Wang G L, Zhong L S, Zhao Q G. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedologica Sinica, 2005, 42(4): 545-550.
[5] Su Y Z, Zhao H L, Zhao W Z, Zhang T H. Fractal features of soil particle size distribution and the implication for indicating desertification[J]. Geoderma, 2004, 122(1): 43-49.
[6] Wang X, Li M H, Liu S, Liu G C. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China[J]. Geoderma, 2006, 134(1): 56-61.
[7] 杜立宇, 李天來, 梁成華, 等. 長期不同施肥處理對設施土壤團聚體組成及其穩定性的影響[J]. 水土保持通報, 2012, 32(1): 38-41.
Du L Y, Li T L, Liang C Hetal. Effects of long-term different fertilizations on composition and stability of soil aggregates in a greenhouse soil[J]. Bulletin of Soil and Water Conservation, 2012, 32(1): 38-41.
[8] Pulleman M, Marinissen J. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil[J]. Geoderma, 2004, 120(3): 273-282.
[9] 郭菊花, 陳小云, 劉滿強, 等. 不同施肥處理對紅壤性水稻土團聚體的分布及有機碳、 氮含量的影響[J]. 土壤, 2007, 39(5): 787-793.
Guo J H, Chen X L, Liu M Qetal. Effects of fertilizer management practice on distribution of aggregates and content of organic carbon and nitrogen in red paddy soil[J]. Soils, 2007, 39(5): 787-793.
[10] 朱冰冰, 李占斌, 李鵬, 等. 土地退化/恢復中土壤可蝕性動態變化[J]. 農業工程學報, 2009, 25(2): 56-61.
Zhu B B, Li Z B, Li Petal. Dynamic changes of soil erodibility during process of land degradation and restoration[J]. Chinese Society of Agricultural Engineering, 2009, 25(2): 56-61.
[11] 陳安強, 張丹, 熊東紅, 劉剛才. 元謀干熱河谷坡面表層土壤力學特性對其抗沖性的影響[J]. 農業工程學報, 2012, 28(5): 108-113.
Chen A Q, Zhang D, Xiong D H, Liu G C. Effects of mechanical properties of surface soil on soil anti-scourability in Yuanmou dry-hot valley[J]. Chinese Society of Agricultural Engineering, 2012, 28(5): 108-113.
[12] 龔偉, 顏曉元, 蔡祖聰, 王景燕. 長期施肥對小麥-玉米輪作土壤微團聚體組成和分形特征的影響[J]. 土壤學報, 2011, 48(6): 1141-1148.
Gong W, Yan X Y, Cai Z C, Wang J Y. Effects of long-term fertilization on composition and fractal feature of soil micro-aggregates under a wheat-maize cropping system[J]. Acta Pedologica Sinica, 2011, 48(6): 1141-1148.
[13] Zhou H, Peng X, Perfect Eetal. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography[J]. Geoderma, 2013, 195: 23-30.
[14] Chenu C, Le Bissonnais Y, Arrouays D. Organic matter influence on clay wettability and soil aggregate stability[J]. Soil Science Society of America Journal, 2000, 64(4): 1479-1486.
[15] Huang S, Peng X, Huang Q, Zhang W J. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China[J]. Geoderma, 2010, 154(3): 364-369.
[16] 袁穎紅, 李輝信, 黃欠如, 等. 不同施肥處理對紅壤性水稻土微團聚體有機碳匯的影響[J]. 生態學報, 2004, 24(12): 2961-2966.
Yuan Y H, Li H X, Huang Q Retal. Effects of different fertilization on soil organic carbon distribution and storage in micro-aggregates of red paddy topsoil[J]. Acta Ecologica sinica, 2004, 24(12): 2961-2966
[17] 霍琳, 武天云, 藺海明, 等. 長期施肥對黃土高原旱地黑壚土水穩性團聚體的影響[J]. 應用生態學報, 2008, 19(3): 545-550.
Huo L, Wu T Y, Lin H Metal. Effects of long-term fertilization on water-stable aggregates in calcic kastanozem of Loess Plateau[J]. Chinese Journal of Applied Ecology, 2008, 19(3): 545-550.
[18] 陳璐, 黨廷輝, 楊紹瓊, 戚瑞生. 黃土旱塬施肥對土壤顆粒組成及其有效磷富集的影響研究[J]. 水土保持學報, 2011, 25(3): 151-153.
Chen L, Dang T H, Yang S Q, Qi R S. Effects of fertilization on soil particle composition and phosphorus enrichment in dry highland of Loess Plateau[J]. Journal of Soil and Water Conservation, 2011, 25(3): 151-153.
[19] 朱顯謨. 黃土高原土壤與農業[M]. 北京: 農業出版社, 1989. 36-53.
Zhu X M. The Loess Plateau soil and agriculture[M]. Beijing: Agriculture Press, 1989. 36-53.
[20] 黃自立, 張文孝. 陜北黃綿土的性質與改良利用[J]. 土壤通報, 1987, (3): 108-110.
Huang Z L, Zhang W X. The nature of Huangmian soils and improving utilization in northern Shaanxi[J]. Chinese Journal of Soil Science, 1987, (3): 108-110.
[21] 安韶山, 黃懿梅, 李壁成, 楊建國. 黃土丘陵區植被恢復中土壤團聚體演變及其與土壤性質的關系[J]. 土壤通報, 2006, 37(1): 45-50.
An S S, Huang Y M, Li B C, Yang J G. Characteristics of soil water stable aggregates and relationship with soil properties during vegetation rehabilitation in a Loess hilly region[J]. Chinese Journal of Soil Science, 2006, 37(1): 45-50.
[22] 張超, 劉國彬, 薛萐, 余娜. 黃土丘陵區不同林齡人工刺槐林土壤抗蝕性演變特征[J]. 中國水土保持科學, 2010, 8(2): 1-7.
Zhang C, Liu G B, Xue S, Yu N. Fractal features of rhizosphere soil microaggregate and particle-size distribution under different vegetation types in the hilly-gully region of Loess Plateau[J]. Science of Soil and Water Conservation, 2010, 8(2): 1-7.
[23] 鐘羨云. 黃土微結構與肥力的關系[J]. 土壤肥料, 1980, (6): 4-7.
Zhong X Y. Relationships between microstructure and fertilizer of the loess[J]. Soil and Fertilizer Sciences in China, 1980, (6): 4-7.
[24] Stark J M. Causes of soil nutrient heterogeneity at different scales[A]. Caldwell M M, Pearcy R. Exploitation of environmental heterogeneity by plants: ecophysiological processes above and below ground[M]. New York: J.Wiley & Sons, 1994. 255-284.
[25] 陳俊杰, 孫莉英, 蔡崇法, 等. 不同土壤坡面細溝侵蝕差異與其影響因素[J]. 土壤學報, 2013, 50(2): 281-288.
Chen J J, Sun L Y, Cai C Fetal. Rill erosion on different soil slope and their affection frators[J]. Acta Pedologica Sinica, 2013, 50(2): 281-288.
[26] 賈恒義. 黃土丘陵草地土壤營養元素含量遷移及分布[J]. 水土保持研究, 1998, 5(1): 119-125.
Jia H Y. The content movement and distribution characteristics of main soil types nutrient elements in hilly Loess Plateau[J]. Research of Soil and Water Conservation, 1998, 5(1): 119-125.
[27] 鄭劍英, 趙更生, 吳瑞浚. 黃綿土在連續施肥下的肥料效應[J]. 水土保持通報, 1990, 10(2): 8-15.
Zheng J Y, Zhao G S, Wu Y J. Fertilizer effect of Huangmian soils under continuous fertilization[J]. Bulletin of Soil and Water Conservation, 1990, 10(2): 8-15.
[28] 鄭劍英,趙更生,吳瑞浚. 連續施用有機肥與化肥對黃綿土的培肥效應[J]. 水土保持研究, 1996, 3 (2): 18-22.
Zheng J Y, Zhao G S, Wu R J. Effect of sustained applying organic matter and chemical fertilizer on improving fertility of Loess Soil[J]. Research of Soil and Water Conservation, 1996, 3(2): 18-22.
[29] Angers D, Samson N, Legere A. Early changes in water-stable aggregation induced by rotation and tillage in a soil under barley production[J]. Canadian Journal of Soil Science, 1993, 73(1): 51-59.
[30] 李勇, 朱顯謨, 田積瑩, 黃義端. 黃土高原土壤抗沖性機理初步研究[J]. 科學通報, 1990, (5): 390-393.
Li Y, Zhu X M, Tian J Y, Huang Y D. Primary study on mechanism of anti-scorability on Loess Plateau[J]. Chinese Science Bulletin, 1990, (5): 390-393.
[31] 郭勝利, 黨廷輝, 劉守贊, 郝明德. 磷素吸附特性演變及其與土壤磷素形態、 土壤有機碳含量的關系[J]. 植物營養與肥料學報, 2005, 11(1): 33-39.
Guo S L, Dang T H, Liu S Z,Hao M D. Changes in characterization of phosphorus sorption in relation to its forms and soil organic carbon[J]. Plant Nutrition and Fertilizer Science, 2005, 11(1): 33-39.
[32] Haynes R, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review[J]. Nutrient Cycling in Agroecosystems, 1998, 51(2): 123-137.
[33] Oades J M. Soil organic matter and structural stability: mechanisms and implications for management[J]. Plant and Soil, 1984, 76(1-3): 319-337.
[34] Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31.
[35] Six J, Elliott E, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J]. Soil Science Society of America Journal, 1999, 63(5): 1350-1358.
[36] 宋日, 劉利, 馬麗艷, 吳春勝. 作物根系分泌物對土壤團聚體大小及其穩定性的影響[J]. 南京農業大學學報, 2009, 32(3): 93-97.
Song R, Liu L, Ma L Y, Wu C S. Effect of crop root exudates on the size and stability of soil aggregate[J]. Journal of Nanjing Agricultural University, 2009, 32(3): 93-97.
[37] 趙文智, 劉志民, 程國棟. 土地沙質荒漠化過程的土壤分形特征[J]. 土壤學報, 2002, 39(6): 877-881.
Zhao W Z, Liu Z M, Chen G D. fractal dimension of soil particle for sand desertification[J]. Acta Pedologica Sinica, 2002, 39(6): 877-881.
[38] 胡云鋒, 劉紀遠, 莊大方, 等. 不同土地利用/土地覆蓋下土壤粒徑分布的分維特征[J]. 土壤學報, 2005, 42(2): 336-339.
Hu Y F, Liu J Y, Zhuang D Fetal. Fractal dimension of soil particles size distritution under different land use/land coverage[J]. Acta Pedologica Sinica, 2005, 42(2): 336-339.
[39] 文星躍, 黃成敏, 黃鳳琴, 黃艷娟. 岷江上游河谷土壤粒徑分形維數及其影響因素[J]. 華南師范大學學報(自然科學版), 2011, (1): 80-86.
Wen X Y, Huang C M, Huang F Q, Huang Y J. Fractal dimenstion of soil particles and related affetion factors from the valley of upper minjiang river[J]. Journal of South China Normal University (Natural Science Edition), 2011, (1): 80-86.
[40] Tisdall J, Oades J. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163.
[41] 彭新華, 張斌, 趙其國. 土壤有機碳庫與土壤結構穩定性關系的研究進展[J]. 土壤學報, 2004, 41(4): 618-623.
Peng X H, Zhang B, Zhao Q G. A review on relationship between soil organic carbon pools and soil structure stability[J]. Acta Pedologica Sinica, 2004, 41(4): 618-623.