999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

永凍層排水處理的案例研究

2014-03-19 03:43:44ViktorShepelevSemenGotovtsev
黑龍江大學工程學報 2014年3期
關鍵詞:案例

Viktor V.Shepelev,Semen P.Gotovtsev

(俄羅斯科學院西伯利亞分院麥爾尼科夫凍土研究所,雅庫茨克677010,俄羅斯)

0 Introduction

In the early 1990s,open pit mining of kimberlite pipes in western Yakutia was confronted with the dewatering problem as mining progressed deeper.Groundwater that flows into the pits consists of natural sodium or calcium chloride brines having total dissolved solid contents of up to 400 g/L.In some diamond deposits, the brines contain bromine,boron,lithium,strontium and other toxic trace elements far in excess of the acceptable limits.Discharge of such brines into terrestrial ecosystems should be avoided.

Several brine disposal methods were tested initially,including storage in surface excavations,subsurface injection,and even direct discharge into river systems during spring floods.After a series of full-scale experiments,injection into perennially frozen ground was a-dopted as a brine disposal method[1-5].

The study area is located in the continuous permafrost zone with ground temperatures rangingfrom-2.5°to -8.5℃.The permafrost,defined as ground with a temperature perennially below 0℃,is 700 to 1 000 m in thickness and has a three-layered structure[6-11].The upper layer,180 to 200 m in thickness,is perennially frozen ground sensu stricto,which contains ice in its fissures and veins[12].To the depth of about 480~500 m,the source of water inflow into the mine pits is from the Upper Cambrian low yield aquifer complex,occurring immediately beneath the layer of perennially frozen ground.Below 500~550 m,water inflow increases significantly due to the groundwater discharged from the Middle Cambrian aquifer complex characterized by high yields.

Subsurface disposal works were begun in 1985 at the Oktyabrsky site located 3.5 km west of the Udachny pipe open pit,on the upland between the Sytykan and Daldyn rivers.The frozen ground at the site consists of interbedded dense,fine-grained limestone and dolomite of Cambrian age.Several subvertical zones of rock fracturing,200 m or more in width,were identified by hydrogeological and geophysical studies.Rocks within these zones are highly fissured.The fissures,0.5 to 15 cm wide,are vertical or inclined and mostly filled with either pure ice or ice-cemented rock debris[12-15].

Geological and hydrogeological studies identified five to six potential receiving horizons at the site within the depths from 40 to 200 m.The higher horizons were found to have better collecting properties than those lying at greater depths.This led to the preferred use of the receiving intervals located within the layer of frozen ground.

The Oktyabrsky site was operated from 1985 to 2002.About 10 640 000 mЗof drainage water was injected into the perennially frozen ground during this period[5,15].When the usable storage volume of the Oktyabrsky site was filled,a new site,the Kienga,was established 5~10 km south-east of the Udachny pipe open pit.The perennially frozen ground here is composed of Upper Cambrian-Lower Ordovician carbonate rocks,locally broken by a mafic intrusion.

Thus,for the first time in the world,permafrost has been used in practice as a disposal medium for subfreezing-temperature drainage brines.

1 Research methods

An extensive research program,including geophysical surveying,aquifer testing and geothermal measurements,was undertaken in support of the fullscale experimentation.Perennially frozen ground used for disposal of toxic brines is a thermodynamically unstable system.Its confining properties depend on temperature;therefore,borehole temperature observations were an essential component of the research program.

At the Oktyabrsky site,geothermal observations were conducted by the Permafrost Institute since August 1986.Temperature anomalies were found to develop in the interval of receiving horizons depending on the brine disposal regime(Fig.1).The dynamics and stabilization of such anomalies depended on the injection regime,as well as on the permafrost and hydrogeologicalcharacteristics ofthe subsurface environment[16-17].This led to the suggestion that injected brine migration conditions could be qualitatively assessed from the nature of changes in the temperature regime of the receiving ground.

2 Results and discussion

Several water collecting intervals were identified within the layer of perennially frozen ground,lying below 40 m from the ground surface.The intervals located closer to the surface have better collecting properties.Analysis of the data from observation boreholes located at different distances from the center of disposal indicated that temperature anomalies frequently occurred at higher levels.This is because during injection the brines migrate through the collecting intervals of complex morphology and can move upward to the higher intervals with better collecting properties due to the induced high hydraulic pressure.Such movement of injected brines increased the possibility of escape onto the ground surface.As is known,permafrost is a highly dynamic system with variable parameters and uncontrolled disposal of liquid industrial wastes in frozen ground may result in adverse consequences associated with their discharge into river systems.

Fig.1 Borehole temperature variation,Oktyabrsky disposal site,western Yakutia

Based on the analysis of temperature observation data,three cryohydrogeothermal zones were discriminated(Fig.2).

Fig.2 Cryohydrogeothermal zones at the Kienga disposal site,western Yakutia

The first cryohydrogeothermal zone occupies the uppermost part of permafrost.The lower limit of this zone coincides,in fact,with the depth of zero annual amplitude.Temperature variations in this zone indicate the response of permafrost to surface disturbance.Temperature observations within this zone should be performed in boreholes equipped with thermistor cables and data loggers.

The base of the second cryohydrogeothermal zone should lie 20~25 m below the low-flow level of the nearest stream.Care must be taken to prevent injected brine from entering this zone,in other words,its temperature field must remain stable.However,our monitoring observations at the disposal sites frequently detected significant temperature fluctuations within this zone,suggesting the escape of brines into the horizons lying above the environmentally safe depths.Unfortunately,no attempts were made to determine the volume of brines that moved up to these horizons.Additional hydrogeological studies should be undertaken now to do this.

The third cryohydrogeothermal zone is the injection zone.The ground temperature regime within this zone depends on the brine injection regime.Based on the dynamics of the ground temperature regime in this zone,the operation regime of the entire disposal site system should be corrected.In particular,frozen ground temperature can be controlled by changing injection volumes in winter and summer periods.

3 Conclusions

Geothermal investigations conducted at the drainage water disposal sites of the Udachny Mine have demonstrated thatthe method ofinjecting toxic wastewater into a subsurface stratum is not well elaborated.The identification of cryohydrogeothermal zones in the perennially frozen ground used for mineralized wastewater injection may be helpful in improving hydrogeological and geothermal monitoring at subsurface disposal sites in permafrost regions.

[1] Porokhnyak A M,Rassudov A V.Disposal of Liquid Wastes in Permafrost(Zahoronenie zhidkih othodov v kriolitozone)[M].Moscow:Nedra,1993.

[2] Serdyukov L I,Artem'eva E L,Strogova E V et al.On the nature of the absorbing property of perennially frozen ground for disposal of drainage brines[J].Gornyj Zhurnal.1996,7(8):5-12.

[3] Alexeev S V,Drozdov A V,Drozdova T I,et al.The first experience of burial of saline drainage waters of Udachnaya pipe quarry into permafrost[J].Kriosfera Zemli,2002,(2):61-65.

[4] Gotovtsev S P.Frozen ground temperature field at the Kienga drainage water disposal site,Udachny Mine[J].Kundel,2003,5:19-26.

[5] Drozdov A V.Disposal of Drainage Brines in Perennially Frozen Ground(with Reference to the Siberian Platform Permafrost).[M].Irkutsk:Irkutsk State Technical University,2007.

[6] Fotiev S M.Hydrogeothermal Characteristics of the USSR Permafrost Region(Gidrogeotermicheskie osobennosti kriogennoj oblasti SSSR)[M].Moscow:Nauka,1978.

[7] Bodunov E I,Beleckij V L,Fradkin G S.Petroleum Geology,Hydrogeology and Geochemistry of the Southern Slope of the Anabar High(Geologija,gidrogeologija i geohimija nefti i gaza juzhnogo sklona Anabarskoj anteklizy)[M].Yakutsk:JaF SO AN SSSR Press,1986.

[8] Klimovskii I V,Gotovtsev S P.Permafrost in the Yakutian Diamond Province(Kriolitozona Jakutskoj almazonosnoj provincii)[M].Novosibirsk:Nauka,1994.

[9] Shepelev V V.On the Concept of Earth's Cryolithosphere(K ponjatiju o kriolitosfere Zemli)[M].Yakutsk:Permafrost Institute Press,1997.

[10]Klimovskii I V,Gotovtsev S P,Shepelev V V.Hydrogeocryological conditions of the polygon of the underground disposal of the drainage water of the“Udachnaya”diamond pipe[J].Kriosfera Zemli,2002,(3):45-50.

[11]Drozdov A V,Iost N A,Lobanov V V.Cryohydrogeology of Diamond Deposits in Western Yakutia(Kriogidrogeologija almaznyh mestorozhdenij Zapadnoj Jakutii)[M].Irkutsk:Irkutsk State Technical University,2008.

[12]Alexeev S V.The Cryogenesis of Groundwaters and Rocks(On an Example of the Daldyn-Alakit Region of Western Yakutia)[M][Kriogenez podzemnyh vod i gornyh porod(na primere Daldyno-Alakitskogo rajona Zapadnoj Jakutii)].Novosibirsk:SB RAS Press,2000.

[13]Drozdov A V,Gotovtsev S P.Migration of injected brines in permafrost.In:Piguzova VM(ed.).Formation of Groundwater in Permafrost[Formirovanie podzemnykh vod kriolitozony][M].Yakutsk:Permafrost Institute Press,1992:31-48.

[14]Alexeev S V.Cryohydrogeological Systems of the Yakutian Diamond Province Kriogidrogeologicheskie sistemy Jakutskoj almazonosnoj provincii[M].Novosibirsk:Geo,2009.

[15]Drozdov A V.Natural and Techno-Natural Reservoirs for Industrial Wastewater in Permafrost Regions(with Reference to the Yakutian Part of the Siberian Platform)[M].Yakutsk:North-Eastern Federal University,2011.

[16]Gotovtsev S P,Klimovskii I V.Effect of drainage water injection on frozen ground temperature.In:Piguzova VM(ed.)Formation of Groundwater in Permafrost(Formirovanie podzemnykh vod kriolitozony)[M].Yakutsk:Permafrost Institute Press,1992:93-108.

[17]Gotovtsev S P,Klimovskii I V,Zabolotnik P S.Importance of geothermal monitoring studies for cryopeg disposal in frozen ground.In:Borisov VN et al.(eds.).Proceedings of Russian Workshop on Groundwater of the Russian East(Materialy Vseross.soveshh.po podz.vodam Vostoka Rossii)[M].Irkutsk:Institute of Earth Crust SB RAS,1994.

猜你喜歡
案例
案例點評
幼兒100(2023年36期)2023-10-23 11:41:48
THE STARSHIP CEDIA 2020案例大賽獲獎案例
LAKERIDGE CEDIA 2020案例大賽獲獎案例
案例4 奔跑吧,少年!
少先隊活動(2021年2期)2021-03-29 05:40:48
TWO VILLAS IN ONE CEDIA 2020案例大賽獲獎案例
Superheroes CEDIA案例大賽優秀案例
Smarter Homes Experience Centre CEDIA案例大賽優秀案例
隨機變量分布及統計案例拔高卷
發生在你我身邊的那些治超案例
中國公路(2017年7期)2017-07-24 13:56:38
隨機變量分布及統計案例拔高卷
主站蜘蛛池模板: 亚洲AⅤ波多系列中文字幕| 91精品伊人久久大香线蕉| 亚洲人成色在线观看| 色噜噜中文网| 国产精品人人做人人爽人人添| 国产一区二区福利| 国产高清自拍视频| 日本精品一在线观看视频| 为你提供最新久久精品久久综合| 老熟妇喷水一区二区三区| 亚洲人成网址| 久久国产成人精品国产成人亚洲| 国产午夜小视频| 欧美日韩动态图| 日韩东京热无码人妻| 国产男女免费完整版视频| 亚洲视频四区| 福利在线不卡一区| 亚洲精选无码久久久| 女人爽到高潮免费视频大全| 女人18毛片水真多国产| 久久黄色视频影| 国产成年女人特黄特色大片免费| 亚洲码一区二区三区| 97视频在线观看免费视频| 青青草原国产| 乱系列中文字幕在线视频| 成人韩免费网站| 久久www视频| 国内精自视频品线一二区| 天天色综网| 69精品在线观看| 国产乱人激情H在线观看| 在线观看无码av免费不卡网站| 91福利一区二区三区| 国产成人精品2021欧美日韩| 亚洲中文无码h在线观看| 国产无码精品在线播放 | 99中文字幕亚洲一区二区| 久久久久国色AV免费观看性色| 91麻豆精品视频| av在线人妻熟妇| 1024国产在线| 亚洲精品午夜天堂网页| 国产女人18水真多毛片18精品| 国产精品毛片一区视频播| 欧美第二区| 在线va视频| 久久99国产精品成人欧美| 亚洲 欧美 偷自乱 图片| 精品一区国产精品| 日韩a级片视频| 日韩欧美在线观看| 国产va在线观看| 精品丝袜美腿国产一区| 国产无码制服丝袜| 国产在线视频导航| 亚洲swag精品自拍一区| 伊人久久福利中文字幕| 国产高潮流白浆视频| 2020极品精品国产 | 亚洲成人一区二区三区| 日本www在线视频| 97视频在线精品国自产拍| 在线观看亚洲精品福利片| 国产丝袜精品| 鲁鲁鲁爽爽爽在线视频观看| 亚洲自拍另类| 手机看片1024久久精品你懂的| 欧美国产综合色视频| 曰韩人妻一区二区三区| 色噜噜在线观看| 亚洲永久视频| 欧美日本不卡| 亚洲国产成熟视频在线多多| 国产成人高清亚洲一区久久| 幺女国产一级毛片| 日本免费福利视频| 91网红精品在线观看| 亚洲国产精品一区二区第一页免| 99在线视频免费| 色婷婷亚洲十月十月色天|