摘 要:開放型習(xí)題是相對有明確條件和明確結(jié)論的封閉式習(xí)題而言的,是指題目的條件不完備或結(jié)論不確定的習(xí)題。
關(guān)鍵詞:開放型;習(xí)題;方法
中圖分類號:G622 文獻(xiàn)標(biāo)識碼:B 文章編號:1002-7661(2013)35-137-01
練習(xí)是數(shù)學(xué)教學(xué)重要的組成部分,恰到好處的習(xí)題,不僅能鞏固知識,形成技能,而且能啟發(fā)思維,培養(yǎng)能力。在教學(xué)過程中,除注意增加變式題、綜合題外,適當(dāng)設(shè)計一些開放型習(xí)題,可以培養(yǎng)學(xué)生思維的深刻性 和靈活性,克服學(xué)生思維的呆板性。
一、運(yùn)用多向型開放題,培養(yǎng)學(xué)生思維的廣闊性
多向型開放題,對同一個問題可以有多種思考方向,使學(xué)生產(chǎn)生縱橫聯(lián)想,啟發(fā)學(xué)生一題多解、一題多變、一題多思,訓(xùn)練學(xué)生的發(fā)散思維,培養(yǎng)學(xué)生思維的廣闊性和靈活性。
如:甲乙兩隊合修一條長1500米的公路,20天完成,完工時甲隊比乙隊多修100米,乙隊每天修35米,甲隊每天修多少米?
這道題從不同的角度思考,得出了不同的解法:
1.先求出乙隊20天修的,根據(jù)全長和乙隊20 天修的可以求出甲隊20天修的,然后求甲隊每天修的。
算式是(1500-35×20)÷20
2.先求出乙隊20天修的,根據(jù)乙隊20天修的和甲隊比乙隊多修100米可以求出甲隊20天修的,然后求甲隊 每天修的。
算式是:(35×20+100)÷20
3.可以先求出兩隊平均每天共修多少米, 再求甲隊每天修多少米。
算式是:1500÷20-35
4.可以先求出甲隊每天比乙隊多修多少米, 再求甲隊每天修多少米。
算式是:100÷20+35
5.假設(shè)乙隊和甲隊修的同樣多,那么兩隊20天共修(1500+100)米,然后求兩隊每天修的,再求甲隊每 天修的。
算式是:(1500+100)÷20÷2
6.假設(shè)乙隊和甲隊修的同樣多,那么兩隊20天共修(1500+100)米,然后求甲隊20天修的,再求甲隊每 天修的。
算式是:(1500+100)÷2÷20
7.假設(shè)乙隊和甲隊修的同樣多,那么兩隊20天共修(1500+100)米,也就是甲隊(20×2)天修的,由此 可以求出甲隊每天修的。
算式是:(1500+100)÷(20×2)
然后引導(dǎo)學(xué)生比較哪種方法最簡便,哪種思路最簡捷。
這類題,可以給學(xué)生最大的思維空間,使學(xué)生從不同的角度分析問題,探究數(shù)量間的相互關(guān)系,并能從不 同的解法中找出最簡捷的方法,提高學(xué)生初步的邏輯思維能力,從而培養(yǎng)學(xué)生思維的廣闊性和靈活性。
二、運(yùn)用多余型開放題,培養(yǎng)學(xué)生思維品質(zhì)的批判性
多余型開放題,將題目中的有用條件和無用條件混在一起,產(chǎn)生干擾因素,這就需要在解題時,認(rèn)真分析 條件與問題的關(guān)系,充分利用有用條件,舍棄無用條件,學(xué)會排除干擾因素,提高學(xué)生的鑒別能力,從而培養(yǎng) 學(xué)生思維的批判性。
如:一根繩子長25米,第一次用去8米,第二次用去12米, 這根繩子比原來短了多少米?
由于受封閉式解題習(xí)慣的影響,學(xué)生往往會產(chǎn)生一種凡是題中出現(xiàn)的條件都要用上的思維定勢,不對題目 進(jìn)行認(rèn)真分析,錯誤地列式為:25-8-12或25-(8+12)。
做題時引導(dǎo)學(xué)生畫圖分析,使學(xué)生明白:要求這根繩子比原來短了多少米,實際上就是求兩次一共用去多 少米,這里25米是與解決問題無關(guān)的條件,正確的列式是:8+12.
通過引導(dǎo)分析這類題,可以防止學(xué)生濫用題中的條件,有利于培養(yǎng)學(xué)生思維的批判性,提高學(xué)生明辨是非 、去偽存真的鑒別能力。
三、運(yùn)用隱藏型開放題,培養(yǎng)學(xué)生思維的縝密性
隱藏型開放題,是解題所需的某些條件隱藏在題目的背后,如不注意容易遺漏。在解題時既要考慮問題及 明確的條件,又要考慮與問題有關(guān)的隱藏著的條件。這樣有利于培養(yǎng)學(xué)生認(rèn)真細(xì)致的審題習(xí)慣和思維的縝密性 .
如:做一個長8分米、寬5分米的面袋,至少需要白布多少平方米?
解答此題時,學(xué)生往往忽視了面袋有“兩層”這個隱藏的條件,錯誤地列式為:8×5,正確列式應(yīng)為:8× 5×2.
解此類題時要引導(dǎo)學(xué)生認(rèn)真分析題意,找出題中的隱藏條件,使學(xué)生養(yǎng)成認(rèn)真審題的良好習(xí)慣,培養(yǎng)學(xué)生 思維的縝密性。
四、運(yùn)用缺少型開放題,培養(yǎng)學(xué)生思維的靈活性
缺少型開放題,按常規(guī)解法所給條件似乎不足,但如果換個角度去思考,便可得到解決。
如:在一個面積為12平方厘米的正方形內(nèi)剪一個最大的圓,所剪圓的面積是多少平方厘米?
按常規(guī)的思考方法:要求圓的面積,需先求出圓的半徑,根據(jù)題意,圓的半徑就是正方形邊長的一半,但 根據(jù)題中所給條件,用小學(xué)的數(shù)學(xué)知識無法求出。換個角度來考慮:可以設(shè)所剪圓的半徑為r, 那么正方形的 邊長為2r, 正方形的面積為(2r)[2]=4r[2]=12,r[2]=3,所以圓的面積是3.14×3=9.42(平方厘米)。