在一次集體備課中,大家不約而同地都談到了學生學習乘法分配律的困難。我校用的是人教版教材,乘法分配律是四年級下冊“運算定律與簡便運算”這一單元的教學內容。《教師用書》建議兩課時完成此內容的教學,但實際上很多教師多用了兩課時,仍感覺學生在運用乘法分配律進行簡便運算時不盡如人意,錯誤率較高。
一、解讀生本:困難因何而來
1.情境創設
教材是借助下面一幅植樹圖來闡明乘法分配律的:
一共有多少名學生參加植樹活動?
教材先呈現兩種不同的算法,分別是25×4+25×2和25×(4+2),然后引導學生發現這兩個算式結果相等的關系,并給出幾組類似的算式,接著呈現乘法分配律的文字描述和字母表達式。這一情境創設的目的是想讓學生經歷知識的產生過程,可是教材注重的是對結果的分析,即從相同的結果入手,進而推出乘法分配律的表達式。這一過程始終是靜態的,學生無法體會到動態的“分配”過程,因此學生無法在頭腦中建立乘法分配律公式的形式和意義之間的聯系,只能機械地去記憶和套用公式。而且,例題中25×(4+2)那么簡單的算式學生心算就可以算出來,為什么要用25×4+25×2這樣的形式來計算呢?學生在情感上并不接受乘法分配律。
2.認知特點
四年級學生的年齡在9~10歲左右,此階段兒童的思維是從前運算階段逐步發展而來的,所以更多時候表現的是前運算階段的思維方式,對圖形更為敏感。由此,對抽象代數符號的陌生感和對圖形的敏感也就造成學生更多的是從“形”上簡單地記憶乘法分配律的公式,而不能準確地把握乘法分配律的本質。
由此可知,乘法分配律成為學生學習的難點和易錯點,不單純是練習少的原因,它和兒童的認識發展、情境創設等有著密切的聯系。
二、思考對策:破解困難的良方
1.數形結合,感知規律
乘法分配律對學生來說是很抽象的,只憑教師的言傳說教難以收到理想的教學效果。而“形”具有形象直觀的特點,能表達較多的具體思維。為了幫助學生掌握乘法分配律的本質,教學中我從學生的情感和認知特點這兩方面出發,創設了數形結合的情境,生動形象的圖形使得抽象的運算定律變得趣味化、直觀化。
如下圖,有一塊長方形苗圃長34米,寬25米。如果長增加6米,你能算出擴建后苗圃的面積有多大嗎?
又如下圖,如果要在苗圃里種上小樹苗,你能算出一共種了多少棵小樹苗嗎?
創設學生容易接受的面積圖和點陣圖,在數形結合的具體情境里,我帶領學生從具體的“形”出發,抽象出數的運算,又回到“形”來解釋運算的含義。如上述兩圖,算式特征與圖像特征相結合有效地加深了學生對乘法分配律本質的理解,同時情境中數的選擇也讓學生感受到了乘法分配律的價值。上述兩圖的算式是25×34+25×6=25×(34+6)和8×17+8×3=8×(17+3),學生只有先體會到它的簡便,才會在心理上接受乘法分配律,才會對它的后繼學習產生濃厚的興趣。
2.對比辨析,深化內涵
在選用乘法運算定律進行簡便運算時,學生往往會出現錯誤選擇乘法分配律和結合律的現象。這主要說明學生模仿記憶的成分較多,只是機械地記憶和套用公式,沒把兩者的本質區分開來。在教學中我采用了對比的教學方法,將兩者聯系起來,引導學生進行比較、辨析,從而明白它們之間的本質區別。如125×48這道算式,學生出現兩種算法:125×48=125×(8×6)=125×8×6和125×48=125×(40+8)=125×40+125×8。學生通過對比、分析發現,運用乘法分配律和乘法結合律進行簡便運算時條件是不一樣的,乘法結合律只針對連乘算式,而乘法分配律一般針對兩種運算。我引導學生把自己的發現編成兩句口訣“有乘有加分配律,幾數連成結合律”,幫助學生更好地記住了乘法運算定律的特征。
3.“幽默”小結,增強記憶
課堂小結是教學中的一個重要環節,精彩的小結能起到畫龍點睛的作用。本節課所學內容如果僅用數學語言加以概括會很枯燥,學生會產生厭煩心理。教師如果能巧妙地運用幽默的語言,不僅能增強學生對知識的理解和記憶,而且能把課堂教學再次推向高潮。在課堂教學快結束時,我提了這樣一個問題:“‘爸爸和媽媽都愛我’這句話,你能用今天所學的乘法分配律來解釋一下嗎?”學生頓時來勁了,爭先恐后地說“爸爸和媽媽都愛我等于爸爸愛我加媽媽愛我”。學生在交流中增強了對乘法分配律的理解和記憶,明白了乘法分配律這個深奧的“大道理”。
(責編 杜 華)