劉 鐳,張真真
(華南師范大學(xué)生物光子學(xué)研究院激光生命科學(xué)研究所、暨激光生命科學(xué)教育部重點實驗室,廣東廣州 510631)
光動力療法(Photodynamic therapy,PDT)已成為治療腫瘤的一項常規(guī)手段,具有創(chuàng)傷小、毒性低、選擇性和適用性好、可重復(fù)治療、可協(xié)同手術(shù)提高療效等多個優(yōu)點[1-4]。PDT的作用基礎(chǔ)是光動力效應(yīng),這是一種由氧分子參與的光敏化反應(yīng)[5-6]。N-aspartyl chlorin e6(NPe6)是一種定位于溶酶體的新一代光敏劑,其光敏化效應(yīng)能特異性損傷溶酶體,進而引發(fā)細胞凋亡[7-11]。
細胞凋亡(apoptosis)是一種普遍的生理現(xiàn)象,它是指在一定的生理或病理條件下,為了維持機體的完整性和自身穩(wěn)態(tài),各種細胞自發(fā)的程序性死亡過程[12]。眾多研究表明,Bax是關(guān)鍵的促凋亡因子,能夠觸發(fā)線粒體凋亡途徑誘導(dǎo)細胞凋亡。在靜息狀態(tài)下,Bax以單體非激活形式分布在胞漿中,在有凋亡刺激因子誘導(dǎo)的情況下,它會被刺激活化轉(zhuǎn)運到線粒體發(fā)揮促凋亡的功能[13-15]。
本研究工作中,為了在活細胞內(nèi)進一步探討溶酶體光損傷誘導(dǎo)細胞凋亡的分子機制,我們應(yīng)用熒光探針GFP-Bax檢測Bax在細胞內(nèi)的動態(tài)變化。利用熒光成像在亞細胞水平對Bax轉(zhuǎn)位線粒體的動力學(xué)特征進行了實時分析。因而,我們在無損傷、活細胞生理條件下實時、直觀、可視地研究了溶酶體光損傷誘導(dǎo)的細胞凋亡過程,獲得了Bax在該凋亡信號通路中的動態(tài)行為特性。
1.1.1 細胞系及試劑 人類肺腺癌細胞系(ASTC-a-1)由暨南大學(xué)醫(yī)學(xué)院藥學(xué)系提供。小牛血清和培養(yǎng)基 DMEM(Dulbecco’s modified Eagle medium)購于英國GIBCO公司;轉(zhuǎn)染試劑LipofectamineTM熒光染料Mito Tracker Red及 Acridine Orange(AO)均購自美國Invitrogen公司。
1.1.2 主要儀器 激光共聚焦掃描顯微鏡(LSM510/ConfoCor2,Zeiss,Germany),微型 CO2細胞培養(yǎng)箱(Tempcontrol 37-2 digital,Zeiss,Germany)。
1.2.1 質(zhì)粒及其構(gòu)建 質(zhì)粒 GFP-Bax是在全長Bax的 N端融合了 GFP,由 R.J.Youle博士惠贈(National Institute of Heath,Bethesda,MD,USA)。
1.2.2 細胞培養(yǎng)及轉(zhuǎn)染 細胞培養(yǎng)液為 DMEM,添加10%小牛血清(FCS),100 units/mL青霉素和100μg/mL的鏈霉素。人肺癌細胞用胰蛋白酶消化,轉(zhuǎn)至細胞培養(yǎng)皿,培養(yǎng)24 h左右,使細胞匯合30%-50%,使用Lipofectin試劑轉(zhuǎn)染,步驟如下:首先取兩只 Eppendorf管:一只加入 0.2 ~0.4μg 質(zhì)粒和100μL無血清DMEM培養(yǎng)基;另一只加入2~2.5μL Lipofectin試劑和100μL無血清DMEM培養(yǎng)基,室溫靜置30~45 min,然后將上述兩管輕輕混勻,室溫靜置10~15 min,用無血清DMEM培養(yǎng)基清洗細胞一次,加0.8mL無血清DMEM培養(yǎng)基于上述的Lipofectin-DNA混合物中,輕輕混勻,加到細胞表面,培養(yǎng)5~24 h后用含小牛血清的DMEM培養(yǎng)基換掉上述轉(zhuǎn)染液,培養(yǎng)24~48 h后即可用于檢測。
1.2.3 激光共聚焦掃描顯微鏡成像檢測 實驗樣品的熒光成像均在Zeiss公司LSM 510型激光共聚焦掃描顯微鏡上完成,采用Plan-Neofluar 40×/1.3 NA油鏡對細胞進行激光共聚焦成像。GFP選用488 nm的氬離子激光作為激發(fā)光源,GFP的吸收濾色鏡選用BP500-550。
1.2.4 光動力誘導(dǎo)細胞凋亡 細胞在正常條件下避光孵育光敏劑NPe610 h,濃度33μmol/L.然后用PBS清洗光敏劑,更換正常的培養(yǎng)基。激光輻照參數(shù)為:半導(dǎo)體激光器(635 nm,NL-FBA-2.0-635),輻照劑量為4 J/cm2,輻照功率為10 mW/cm2。
1.2.5 數(shù)據(jù)分析 記錄的圖像和數(shù)據(jù)均用Zeiss Rel3.2圖象處理軟件(Zeiss,Germany)對圖象上所選定的區(qū)域進行熒光強度定量分析。所有實驗均進行了n≥3次重復(fù),同時重復(fù)對多個細胞的實驗數(shù)據(jù)進行了分析。

圖1 光敏劑NPe6的亞細胞定位Fig.1 Localization of NPe6 in ASTC-a-1 cells.ASTC-a-1 cellswere loaded with 33μmol/L NPe6 and 0.5μmol/LAO.NPe6(left panel)and AO fluorescence(middle panel)were visualized by confocal microcopy.The overlay fluorescence image(right panel)of NPe6 and AO indicates that NPe6 is primarily localized in the lysosomes in ASTC-a-1 cells.Scale bar=10μm
我們應(yīng)用激光共聚焦掃描顯微鏡來檢測光敏劑NPe6的亞細胞定位。AO用來特異性標記溶酶體。結(jié)果顯示:光敏劑與AO的熒光成像有很好的重合(圖1)。證明光敏劑特異性定位于溶酶體。

圖2 NPe 6-PDT誘導(dǎo)細胞凋亡過程中Bax轉(zhuǎn)位到線粒體的動態(tài)變化Fig.2 Dynamics of Bax translocation to mitochondria during NPe 6-PDT-induced apoptosis
為了檢測Bax活化后的動態(tài)行為,實驗中將質(zhì)粒GFP-Bax轉(zhuǎn)染進ASTC-a-1細胞,通過對GFP的熒光成像追蹤Bax在細胞內(nèi)的運動。同時用Mit Tracket Red標記線粒體形態(tài),根據(jù)GFP和 Mit Tracket Red的熒光重疊情況來判別Bax是否轉(zhuǎn)位到線粒體。結(jié)果顯示,在對照組,凋亡未發(fā)生,Bax主要分布在胞漿內(nèi),線粒體呈細長的線狀或樹枝狀,散布在細胞質(zhì)內(nèi),可以明顯看出Bax沒有聚集在線粒體上(圖2A)。而凋亡發(fā)生后,可以明顯看到線粒體分布在細胞核周圍,Bax明顯定位,GFP和 Mit Tracket Red熒光成像的重疊顯示Bax定位在線粒體上,證明溶酶體光損傷誘導(dǎo)了Bax從胞漿內(nèi)轉(zhuǎn)位到了線粒體(圖2B)。通過定量分析線粒體富集區(qū)域GFP的熒光強度隨時間變化的關(guān)系(圖 3),也證實在此過程中,Bax逐步轉(zhuǎn)位到了線粒體。動力學(xué)特征顯示,一旦凋亡發(fā)生,Bax迅速轉(zhuǎn)位線粒體,在30 min內(nèi)便能完成。

圖3 NPe 6-PDT誘導(dǎo)細胞凋亡過程中Bax轉(zhuǎn)位到線粒體量化分析Fig.3 Quantification of Bax translocation to mitochondria after NPe 6-PDT treatment.Each curve represents an average of 12-15 cells obtained from 3 independent experiments.Bax-GFP fluorescence intensity in each curve at the first time point is normalized to 100 and the time of the onset of Bax-GFP redistribution is set to zero.Data represent the mean±SEM
近年來,我們實驗室致力于發(fā)展單分子實時檢測手段在活細胞內(nèi)研究蛋白分子的動態(tài)變化[16-17]。本研究中,我們在活細胞內(nèi)實時監(jiān)控溶酶體光損傷誘導(dǎo)細胞凋亡過程中Bax亞細胞定位的動態(tài)變化。結(jié)果表明,光敏劑NPe6特異性定位于溶酶體(圖1)。溶酶體光損傷后約170 min,Bax開始轉(zhuǎn)位到線粒體,其過程非常迅速,在30 min之內(nèi)便大量聚集在線粒體上(圖2,圖3)。該研究結(jié)果實時動態(tài)地展示了細胞凋亡過程中Bax的時空變化過程,為研究靶向溶酶體的光動力治療提供理論參考。
[1]DOUGHERTY T J,GOMER C J,HENDERSON B W,et al.Photodynamic therapy:review[J].J Natl Cancer Inst,1998,90:889-905.
[2]HENDERSON B W,DOUGHERTY T J.How does photodynamic therapywork [J]. Photochem Photobiol, 1992,55:145-157.
[3]AGARWAL M L,CLAY M E,HARVEY E J,et al.Photodynamictherapy induces rapid cell death by apoptosis in L5178Y mouselymphomacells [J]. CancerRes, 1991, 51:5993-5996.
[4]OLEINICK N L,MORRIS R L,BELICHENKO I.The role of apoptosis in response to photodynamic therapy what,where,why,and how [J].Photochem Photobiol Sci,2002,1:1-21.
[5]KESSEL D,LUO Y,DENG Y,et al.The role of sub-cellularlocalization in initiation of apoptosis by photodynamic therapy[J].Photochem Photobiol,1997,65:422-426.
[6]OLEINICK N L,EVANS H H.The photobiology of photodynamic therapy:cellular targets and mechanisms[J].Radiat Res,1998,150:146-156.
[7]USUDA J,KATO H,OKUNAKA T,et al.Photodynamic therapy(PDT)for lung cancers[J].J Thorac Oncol,2006,5:489-493.
[8]KANEKO T,CHIBA H,YASUDA T,et al.Detection of photodynamic therapy-induced early apoptosis in human salivary gland tumor cells in vitro and in a mouse tumor model[J].Oral Oncol,2004,40:787-792.
[9]REINERS J J,CARUSO J A,MATHIEU P,et al.Release of cytochrome c and activation of pro-caspase-9 following lysosomalphotodamage involves Bid cleavage [J].Cell Death Differ,2002,9:934-944.
[10]CARUSO J A,MATHIEU P A,JOIAKIM A,et al.Differential susceptibilities of murine hepatoma 1c1c7 and tao cells to the lysosomal photosensitizer NPe6:influence of Aryl hydrocarbon receptor on lysosomal fragility and protease contents[J].Mol Pharmacol,2004,65:1016-1028.
[11]CARUSO J A,MATHIEU P A,REINERS J J,Sphingomyelins suppress the targeted disruption of lysosomes/endosomes by the photosensitizer NPe6 during photodynamic therapy[J].Biochem J,2005,392:325-334.
[12]LUO X,BUDIHARDJO I,ZOU H,et al.Bid,a Bcl-2 interacting protein,mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors[J].Cell,1998,94:481-490.
[13]HUANG D C S,STRASSER A.BH3-only proteins-essential initiators of apoptotic cell death[J].Cell,2000,103:839-842.
[14]KORSMEYER S J,WEI M C,SAITO M,et al.Pro-apoptotic cascade activates BID,which oligomerizes BAK or BAX into pores that result in the release of cytochrome c[J].Cell Death Differ,2000,7:1166-1173.
[15]DESAGHER S,SAND A O,NICHOLS R,et al.Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis[J].J Cell Biol,1999,144:891-901.
[16]GAO X,CHEN T,XING D,et al.Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation[J].J Cell Physiol,2006,206:441-448.
[17]PEI Y,XING D,GAO X,et al.Real-time monitoring full length Bid interacting with Bax during TNF-α-induced apoptosis[J].Apoptosis,2007,12:1681-1690.