王 晨 陳增強
(南開大學信息技術科學學院,天津 300071)
RFID(radio frequency identification)技術是一種非接觸式近場通信與識別技術[1].近年來,RFID技術已經越來越多地應用于世界的各個角落,如電子防盜系統[2]、物流供應鏈[3]、室內目標定位等[4].實際的RFID系統包括讀寫器(reader)、讀寫器天線(antenna)和標簽(tags).在許多情況下,了解RFID信號強度在空間中的分布情況是必要的.一方面,我們必須保證標簽能接收和發送相當強度的射頻信號;另一方面,過多的讀寫器和標簽會導致成本的提高,標簽相互之間也可能發生干擾.進一步說,在一些室內目標定位算法中,準確的標簽信號強度模型本身是必不可少的[5-6].由于根據電磁學理論進行建模工作困難且往往不能準確反映復雜的實際情況,本文利用神經網絡的逼近和預測能力進行建模,該方法僅依賴實測數據,實施簡單并且可獲得滿意結果[7].同時,一種連續的蟻群優化方法被引入以克服傳統BP算法的缺陷.
采用神經網絡建模方法需要確定網絡各層連接權值.由于經典的BP算法存在梯度類算法普遍具有的缺陷,如結果依賴于誤差表面形狀、收斂速度慢、容易陷入局部極值等,本文采用了一種新的方法:連續蟻群優化方法.相比其他幾種優化方法如遺傳算法、粒子群優化,該方法具有更強的全局搜索能力和效率.
蟻群優化算法(ACO)于1991年由Dorigo受螞蟻覓食行為啟發而提出的一種啟發式進化算法,最初用以解決以旅行商問題為代表的離散優化問題[8-9].2008 年,Socha 和 Dorigo[10]在遵循蟻群算法基本框架的前提下,給出了一種連續域中的蟻群算法(CACO),顯示出了很好的效果.限于篇幅,蟻群算法的基礎理論在這里省略,具體請參考文獻[8-9],下面直接介紹連續蟻群優化算法.對于如下形式的連續優化問題:

同ACO類似,在CACO中,對每只螞蟻來說,一個完整的可行解需要 n次移動來構建,x1,x2,…,xn的值在各次移動中被按順序給出.但是和離散域中的 ACO不同的是,對于連續問題,像ACO中那樣,通過列表的形式記錄每條路徑上的信息素濃度是不可能的.為此,需要引入一種新的方法來表達信息素濃度.CACO中采用了高斯核函數形式的概率密度函數來實現連續的信息素表達.對于值x,其對應的概率密度Gi(x)為

它是k個一維高斯函數的加權和,Gi(x)越大,說明每只螞蟻在第i次移動中xi有更大的概率被賦值為x.圖1給出了當k=5時高斯核函數的形狀.

圖1 高斯核函數的形狀
Gi(x)由3個參數向量組成,權重向量ωl,均值向量,以及標準差向量.i標識了式(1)中問題的第i個分量,l標識了第l個一維高斯函數.為了計算這些參數,一定數量的(k個)到目前為止找到的最優解被存儲在表T中,如圖2所示.對于每個目前找到的最優解,它的每一個分量及其適應函數值f(sl)被記錄下來.表T中,根據適應值的不同,各個解依次由“好”到“壞”排列,每個解對應一個ωl值,該值被用來作為每個一維高斯函數在核函數中的權重,越好的“解”在核函數中占的比重越大.Gi(x)的全部參數只根據當前k個最優解的第i個分量計算,k,q,ξ需要算法設計者自己選擇,k為存儲的當前最優解的個數,ξ用于調節每個一維高斯函數的標準差,q用于調節每個當前最優解的重要程度(對應的一維高斯函數的權重).k,q,ξ的值越大,算法具有更強的全局搜索能力,但同時也有更緩慢的收斂速度.圖3給出了當q不同時ωl的變化情況.

圖2 表T中存儲的k個當前最優解

圖3 q對ωl取值的影響

此外,由于高斯核函數Gi(x)形式較為復雜,在第i次移動中對每只螞蟻直接從該概率密度函數中采樣并不像從正態分布或均勻分布一樣簡單,故下面給出一種等效的間接方法.根據

為敘述清晰,下面給出N維優化問題的連續蟻群算法的基本步驟:
步驟1 初始化參數k,q,ξ,種群規模C,最大迭代步數M,隨機初始化表T,并令i=0,j=0,t=0.
步驟2 對第i次移動,令種群中每只螞蟻移動一步.選擇一個)計算參數并從該概率密度分布中采樣,作為該螞蟻構建解的第i個分量,j=j+1.
步驟3 是否每只螞蟻都移動完了一步(即j>C)?是,則i=i+1并轉步驟4;否則轉步驟2繼續迭代.
步驟4 是否每只螞蟻都構建了一個完整的N維可行解(即i>N)?是,則更新表T使其保持為一組當前找到的最優解,t=t+1,轉步驟5;否則j=0轉步驟2繼續迭代;
步驟5 當前迭代是否達到最大(即t>M)?是,則結束循環,表T中的排序最高的解即為找到的最優解;否則i=0,j=0轉步驟2繼續迭代.
考慮到實際應用中,相比于RFID環境空間某點處的實際場強信號,我們更關心的是讀寫器所探測到的反向散射回來的信號的強度,故我們選擇了對標簽反射回來的信號強度進行建模.實驗中,我們選用Speedway R420讀寫器,A9028L30NF天線以及若干被動式標簽,見圖4~6.其工作頻率為902~928 MHz,通信機理為反向散射.

圖4 Speedway R420讀寫器

圖5 A9028L30NF天線

圖6 被動式標簽
為使用神經網絡得到一組場強空間分布模型,我們需要測得若干組由位置向量(X,Y,Z)T和反射信號強度s組成的數據.實測得有效數據35組,標簽位置如圖7所示.另外,對于空間中存在的一些信號死區(圖7中未標注),這些位置的信號強度將被認為是一組很小的值.
構建了一個3層前饋網絡,結構如圖8所示.輸入層節點為位置向量(X,Y,Z)T(這里z暫時固定為0),輸出層節點s為相應的反射信號強度,隱含層經試驗被確定為20,故共有101個連接權值或閾值參數需要確定.在經過訓練得到一神經網絡模型之后,任一位置(X,Y,Z)T處的反射信號強度可由式(7)和(8)來確定,式中 ωi1,ωi2,ωi3是第 i個隱含層和輸入層的連接權值,ωi是輸出層節點和第i個隱含層節點的連接權值,θi為第i個隱含層的閾值,θ為輸出節點的閾值.

圖7 實驗中的標簽分布

圖8 前饋神經網絡結構

用連續蟻群算法訓練網絡2000次,圖9給出了理論場強模型[11]的仿真結果,圖10為用本文中的神經網絡方法得到的結果,即反射信號場強模型.圖11和圖12進一步給出了網絡模型的逼近能力和泛化能力.對比圖9和圖10,理論模型與采用文中方法建立的實際模型之間存在較明顯的差異.造成這種差異的因素包括讀寫器天線的形狀、實驗環境周圍的布局、電磁干擾和空氣濕度等.由于各種復雜因素,理論模型和實際結果往往有較大差異.圖11和圖12中體現出神經網絡模型良好的逼近能力和較好的泛化能力,說明本文所使用的建模方法相比于理論結果更能反映實際情況.

圖9 信號場強的理論模型

圖10 建立的反射信號強度分布模型

圖11 網絡模型的逼近能力

圖12 網絡模型的泛化(預測)能力
本文使用神經網絡的方法建立了RFID反射信號的場強分布模型,為了克服傳統BP算法訓練神經網絡帶來的缺陷,本文引入了一種新的連續蟻群優化方法來確定網絡權值,文中給出了算法的詳細機理和操作方法,該方法具有更強的全局搜索能力和效率.最后,實際的實驗結果表明,在考慮到各種不可避免的誤差和擾動下,本文所給出的建模方法具有較好的建模精度,具有應用價值.
References)
[1]Landt J.The history of RFID [J].Potentials,IEEE.2005,27(4):8-11.
[2]Rekika Y,Sahinb E,Dalleryb Y.Inventory inaccuracy in retail stores due to theft:an analysis of the benefits of RFID [J].International Journal of Production Economics,2009,118(1):189-198.
[3]李敏波,金祖旭,陳晨.射頻識別在物品跟蹤與追溯系統中的應用[J].計算機集成制造系統,2010,16(1):202-208.Li Minbo,Jin Zuxu,Chen Chen.Application of RFID on products tracking and tracing system [J].Computer Integrated Manufacturing Systems,2010,16(1):202-208.(in Chinese)
[4]Ni L M,Liu Y,Lau Y C,et al.LANDMARC:indoor location sensing using active RFID [J].Wireless Networks,2004,10(6):701-710.
[5]Joho D,Plagemann C,Burgard W.Modeling RFID signal strength and tag detection for localization and mapping[C]//IEEE International Conference on Robotics and Automation.Kobe,Japan,2009:3160-3165.
[6]Brchan J L,Zhao Z L,Wu J Q.A real-time RFID localization experiment using propagation models[C]//IEEE International Conference on RFID.Orlando,FL,USA,2012:141-148.
[7]Lee C M,Ko C N.Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm [J].Neurocomputing,2009,73(1/2/3):449-460.
[8]Dorigo M,Gambardella L M.Ant colonies for the travelling salesman problem [J].BioSystems,1997,43(2):73-81.
[9]Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life.Paris,France,1992:134-142.
[10]Socha K,Dorigo M.Ant colony optimization for continuous domains[J].European Journal of Operational Research,2008,185(3):1155-1173.
[11]Rappaport T S.Wireles communications principles and practice[M].Piscataway,NJ,USA:IEEE Press,2009.