999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Phase Behaviors of 1-Butyl-3-methylimidazolium Hexafluorophosphate+Water+Alcohol Systems

2013-07-25 09:09:12NINGHuiHOUMinQiangMEIQingQingYANGDeZhongHANBuXing
物理化學學報 2013年4期
關鍵詞:化學

NING Hui HOU Min-Qiang MEI Qing-Qing YANG De-Zhong HAN Bu-Xing

(Beijing National Laboratory for Molecular Sciences,CAS Key Laboratory of Colloid,Interface and Chemical Thermodynamics,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R.China)

1 lntroduction

Room-temperature ionic liquids(ILs)are organic salts with low melting points(usually below 100°C),which are composed of cations and anions.ILs have some unique properties,such as negligible vapor pressure at mild conditions,wide liquid temperature range,nonflammability,strong solvent power for both organic and inorganic substances.1ILs have wide potential applications in different fields,including chemical reactions,2,3material science,4separation,etc.5,6

In recent years,study of physiochemical properties,6-20including the phase behaviors6-12and other thermodynamic properties13-15has attracted much attention due to the importance from both scientific and practical viewpoints.The phase behaviors of the systems containing both ILs and alcohols and/or water have also been studied.For example,the phase behaviors of IL+alcohol21,22and IL+water23binary systems have been studied by different authors.The phase behaviors of some IL+water+alcohol ternary systems and the co-solvent effects in the systems have also been investigated.24-27It was shown that[bmim][PF6],a hydrophobic IL,could be totally miscible with aqueous ethanol in certain mole fraction range of ethanol,24,25whereas it was only partially miscible with either pure water or absolute ethanol.

Study of the dependence of phase behaviors of multi-component IL systems on the structures of the components is still a very interesting topic,although some systems have been studied.Water is a typical green solvent.Alcohols are commonly used solvents and reactants.[bmim][PF6]is one of the typical ILs.Freireet al.28studied hydrolysis properties of[bmim][PF6],and the result indicated that the hydrolysis of the IL at moderate temperatures was negligible even for long time periods.Investigation of the effect of size and structure of alcohols on the phase behavior of IL+water+alcohol systems is of interest both academically and practically.In this work,we studied the phase behaviors of[bmim][PF6]+water+methanol,[bmim][PF6]+water+ethanol,[bmim][PF6]+water+2-propanol,and[bmim][PF6]+water+1-propanol systems,and the effect of the alcohol structure on the phase behaviors was investigated.Our literature survey indicated that except for[bmim][PF6]+water+ethanol system,the phase behaviors of the other three systems have not been reported.The results indicate that the phase behaviors of the[bmim][PF6]+water+alcohol systems depend strongly on both the size and the structure of alkyl chains of the alcohols.

2 Experimental

2.1 Materials

The IL[bmim][PF6](purity,≥99%)were provided by Lanzhou Greenchem ILS,Chinese Academy of Science,China.Before the experiment,the IL was dried under vacuum at 70°C until the mass was not changed with drying time,and the content of water in the IL was less than 0.03%(mass fraction)by Karl Fischer titration(751 GPD Titrino,Metrohm,Switzerland).The anhydrous methanol(>99.7%),ethanol(>99.7%),1-propanol(>99.7%),and 2-propanol(>99.7%),were purchased from Sinopharm Chemical Reagent Co.,Ltd.Triply distilled water was used in all the experiments.

2.2 Apparatus and procedures

The phase behaviors of the systems were determined by cloud-point titration method,which was similar to those used by other authors.22,25,26The apparatus were mainly consisted of a constant temperature water bath,a glass bottle(ca 50 mL),syringes of different volumes,and a magnetic stirrer.The constant temperature water bath was maintained at(298.15±0.05)K by an YKKY A2 temperature controller(Beijing Changliu Scientific Instruments Co.,Ltd.).An AR224CN balance(Ohas Instruments Co.,Ltd.,Shanghai,China)with an uncertainty of 0.0001 g was used to determine the masses of the components.

To determine the phase behavior of the ternary system,a water-IL sample(ca 10 mL)with known composition was titrated with ethanol,or an ethanol-IL sample(ca 10 mL)with known composition was titrated with water in a glass bottle.A syringe of suitable size was used to add water or alcohol to the glass bottle.During the titration,the mixture was stirred until the phase transition from turbidity to clarity or from clarity to turbidity was observed.The mass of the added alcohol or water was determined by weighing the syringe before and after the titration.Reaching equilibrium was crucial for the experiments.To ensure that the equilibrium was reached after a titration,the phase behavior of the system was observed until it was independent of time.The equilibrium time was at least 24 h.

To determine the phase behavior of a[bmim][PF6]+water or[bmim][PF6]+alcohol binary system,suitable amount of mixture was sealed in the glass bottle that was immersed in the constant temperature water bath.The bottle was shaken for about 10 min,and then equilibrated at static condition.After phase equilibrium had been reached,the IL-rich phase and water/alcohol-rich phase were sampled using syringes,and the samples were placed in glass tubes separately.The samples were dried at 70°C under vacuum to remove the water or alcohol completely,which was known by the fact that the mass of the samples was independent of drying time.The masses of the IL and water or alcohol in the samples were easily known from the masses changes of the glass tubes.To confirm that the analytical method was reliable,we carried out control experiments using[bmim][PF6]+water and[bmim][PF6]+alcohol binary mixtures of known composition by the same procedures.The results indicated that the after drying,the content of water or an alcohol in the IL was less 0.03%.In the experiments,equilibrium was confirmed by the fact that the data obtained at different times were the same.

3 Results and discussion

The cloud point data of[bmim][PF6]+water+methanol,[bmim][PF6]+water+ethanol,[bmim][PF6]+water+2-propanol,and[bmim][PF6]+water+1-propanol ternary systems were determined at 298.15 K and ambient pressure.The miscibility of the sub-binary systems was also determined.All the data are presented in Table 1.The ternary phase diagrams are illustrated in Figs.1-4.It was estimated that the mole fractions in the table can be accurate to±0.002.

3.1 Phase equilibria of[bmim][PF6]+alcohol(or water)binary systems

The IL and methanol were miscible in the entire composition range.The data in Table 1 indicate that the solubilities of water,ethanol,2-propanol,and 1-propanol in[bmim][PF6]were 25.8%(molar fraction),51.7%,32.8%,and 27.3%,respectively.The solubilities of the IL in water,ethanol,2-propanol,and 1-propanol were 0.14%,0.67%,1.1%,and 0.13%,respectively.The solubility data of the binary systems agree well with the data reported in the literature.21,22The solubility of the alcohols(or water)in[bmim][PF6]follows the order of methanol>ethanol>2-propanol>1-propanol>water,and the order of the solubility of the IL in alcohols(or water)is methanol>2-propanol>ethanol>water≈1-propanol.The mole fraction and mass fraction have the same order.

3.2 Phase equilibria of[bmim][PF6]+water+alcohol ternary systems

Table 1 Cloud point data(in mole fraction(x))of[bmim][PF6](1)+water(2)+alcohol(3)systems at 298.15 K and ambient pressure

For the[bmim][PF6]+water+methanol system,only one biphase region exists at the experimental temperature(Fig.1)because methanol is miscible with both the IL and water in the whole composition range,and the IL and water are partially miscible.

The[bmim][PF6]+water+ethanol system has two biphase regions(Fig.2),which is consistent with the results reported by other authors,24-27which confirmed reliability of the apparatus and experimental procedures.Similarly,[bmim][PF6]+water+2-propanol system also has two biphase regions,as can be known from Fig.3.As shown in Fig.2 and Fig.3,although[bmim][PF6]is only partially miscible with water,ethanol,and 2-propanol,it can be totally miscible with the water-alcohol mixtures when the mole fraction of the alcohols is 0.40-0.75 for ethanol and 0.35-0.50 for 2-propanol,respectively.In addition,the figures also show that the monophase region becomes smaller with increasing the carbon number of the alcohols.

Fig.1 Ternary phase diagram of[bmim][PF6]+water+methanol system at 298.15 K and ambient pressure

Fig.2 Ternary phase diagram of[bmim][PF6]+water+ethanol system at 298.15 K and ambient pressure

Fig.3 Ternary phase diagram of[bmim][PF6]+water+2-propanol system at 298.15 K and ambient pressure

Fig.4 Ternary diagram of[bmim][PF6]+water+1-propanol system at 298.15 K and ambient pressure

Fig.4 demonstrates that the two biphasic regions meet together to form a large biphasic region for the[bmim][PF6]+water+1-propanol system,leaving two narrow monophase regions at the bottom and top regions.It can be concluded from Fig.3 and Fig.4 that the co-solvent effect of the alcohols depends strongly on the structures of the alcohols.The water-alcohol co-solvent effect of 2-propanol is much larger than that of 1-propanol.

It is known that the phase behaviors of mixtures depend on many factors,such as the size and structures of the components and intermolecular interactions in the systems.Detailed explanation for the effects of the alcohols on the phase behaviors of the[bmim][PF6]+water+alcohol systems is very interesting,but is very difficult.Co-solvent effect exists in various kinds of multi-component mixtures,including IL-based systems.Some authors27,29have suggested that the water molecules prefer to interact with the anions of ILs by H-bond and an alcohol also has the ability to form H-bond with the anions of ILs.21,30,31Rogers and coworkers25believed that ethanol and water may form special structures and free-volume cavities,or void space within the IL matrix which may allow ethanol and water to be dissolved together,whilst maintaining the bulk ethanol/water H-bonding structure with only weak interactions between the alkyl-groups of the IL and the hydrophobic ethyl-substituents of the ethanol chains.Najdanovic-Visak and coworkers26,27gave a more direct evidence to confirm that the water cosolvent effect does play an important role in liquid-liquid equilibrium of IL-alcohol systems.Brennecke and coworkers21indicated that the solubility of alcohols in the IL-rich phase is higher for branched alcohols than it is for linear alcohols,which may be explained by the H-bond interaction between alcohols and ILs that is infected considerably by the structure of alcohols with the same carbon number.Accordingly,the co-solvent effect can be influenced not only by the length of the chain but also the structure of the alcohols.

For the ternary systems studied in this work,the co-solvent effect of the alcohols affects the phase behaviors significantly.The smaller alcohols are more miscible with both the IL and water,and their co-solvent effect is larger.Similar with the results reported,21the branched 2-propanol has a stronger interaction with water and[bmim][PF6]than 1-propanol.Therefore,the co-solvent effect of 2-propanol is stronger than 1-propanol,which is the main reason for the difference between the phase behaviors of[bmim][PF6]+water+2-propanol and[bmim][PF6]+water+1-propanol systems,as shown in Fig.3 and Fig.4.

4 Conclusions

The ternary phase behavior of[bmim][PF6]+water+alcohol systems are studied at 298.15 K and ambient pressure.[bmim][PF6]+water+methanol has a monophase region and a biphase region.Both[bmim][PF6]+water+ethanol and[bmim][PF6]+water+2-propanol have a monophase region and two biphase regions,and the area of the monophase in the former is larger.However,when the 2-propanol is substituted by 1-propanol,the[bmim][PF6]+water+1-propanol phase diagram shows two monophase regions and two biphase regions.Both the size and the structure of alkyl chains of the alcohols influence the phase behaviors[bmim][PF6]+water+alcohol systems significantly.

(1) Freemantle,M.;Welton,T.;Rogers,R.D.An Introduction to Ionic Liquids;RSC Publishing:Cambridge,2009.

(2)Zhu,Y.H.;Zeng,H.Y.;Li,S.S.;Lu,Z.X.;Ma,C.A.Acta Phys.-Chim.Sin.2012,28,421.[朱英紅,曾紅燕,李姍姍,陸在祥,馬淳安.物理化學學報,2012,28,421.]doi:10.3866/PKU.WHXB201112122

(3) Gong,Y.Y.;Liu,M.;Jia,S.Y.;Feng,J.P.;Song,C.S.;Guo,X.W.Acta Phys.-Chim.Sin.2012,28,686.[公艷艷,劉 民,賈松巖,馮建萍,宋春山,郭新聞.物理化學學報,2012,28,686.]doi:10.3866/PKU.WHXB201112292

(4) Zhao,Y.J.;Zhang,J.L.;Han,B.X.;Song,J.L.;Li,J.S.;Wang,Q.Angew.Chem.Int.Edit.2011,50,636.doi:10.1002/anie.v50.3

(5)Chen,Y.;Han,J.;Wang,T.;Mu,T.C.Energy Fuels2011,25,5810.doi:10.1021/ef201519g

(6)Jin,M.;Hou,Y.C.;Wu,W.Z.;Ren,S.H.;Tian,S.D.;Xiao,L.;Lei,Z.G.J.Phys.Chem.B2011,115,6585.doi:10.1021/jp1124074

(7)Zhao,X.Y.;Cao,Y.R.;Cao,G.R.;Xiao,R.J.Acta Phys.-Chim.Sin.2012,28,1411.[趙學艷,曹宇容,曹桂榮,肖瑞杰.物理化學學報,2012,28,1411.]doi:10.3866/PKU.WHXB201203262

(8) Xu,X.C.;Peng,C.J.;Liu,H.L.;Hu,Y.Ind.Eng.Chem.Res.2009,48,11189.doi:10.1021/ie9011722

(9)Chen,Y.H.;Zhang,S.J.J.Chem.Eng.Data2009,55,278.

(10)Wu,C.Z.;Wang,J.J.;Pei,Y.C.;Wang,H.Y.;Li,Z.Y.J.Chem.Eng.Data2010,55,5004.doi:10.1021/je100604m

(11)Li,X.M.;Shen,C.;Li,C.X.J.Chem.Thermodyn.2012,53,167.doi:10.1016/j.jct.2012.05.001

(12) Zhang,J.L.;Han,B.X.;Li,J.S.;Zhao,Y.J.;Yang,G.Y.Angew.Chem.Int.Edit.2011,50,9911.doi:10.1002/anie.v50.42

(13)Liu,Z.M.;Wu,W.Z.;Han,B.X.;Dong,Z.X.;Zhao,G.Y.;Wang,J.Q.;Jiang,T.;Yang,G.Y.Chem.Eur.J.2003,9,3897.

(14)Zhang,Q.G.;Wei,Y.;Sun,S.S.;Wang,C.;Yang,M.;Liu,Q.S.;Gao,Y.A.J.Chem.Eng.Data2012,57,2185.doi:10.1021/je300153f

(15) Fang,D.W.;Tong,J.;Guan,W.;Yang,J.Z.Scientia Sinica Chimica2010,40,1339.[房大維,佟 靜,關 偉,楊家振.中國科學:化學,2010,40,1339.]

(16) Liu,Q.S.;Yan,P.F.;Yang,M.;Tan,Z.C.;Li,C.P.;Welz-Biermann,U.Acta Phys.-Chim.Sin.2011,27,2762.[劉青山,顏佩芳,楊 淼,譚志誠,李長平,Welz-Biermann Urs.物理化學學報,2011,27,2762.]doi:10.3866/PKU.WHXB20112762

(17)Ning,H.;Hou,M.Q.;Mei,Q.Q.;Liu,Y.H.;Yang,D.Z.;Han,B.X.Sci.China Chem.2012,55,1509.[寧 匯,侯民強,梅清清,劉元會,楊德重,韓布興.中國科學:化學,2012,55,1509.]doi:10.1007/s11426-012-4655-1

(18)Fang,D.W.;Tong,J.;Guan,W.;Wang,H.;Yang,J.Z.J.Phys.Chem.B2010,114,13808.doi:10.1021/jp107452q

(19) Zhang,L.Q.;Li,H.R.Acta Phys.-Chim.Sin.2010,26,2877.[張力群,李浩然.物理化學學報,2010,26,2877.]doi:10.3866/PKU.WHXB20101123

(20)Zhang,Q.G.;Wang,N.N.;Wang,S.L.;Yu,Z.W.J.Phys.Chem.B2011,115,11127.doi:10.1021/jp204305g

(21) Crosthwaite,J.M.;Aki,S.;Maginn,E.J.;Brennecke,J.F.J.Phys.Chem.B2004,108,5113.doi:10.1021/jp037774x

(22) Sahandzhieva,K.;Tuma,D.;Breyer,S.;Kamps,A.P.S.;Maurer,G.J.Chem.Eng.Data2006,51,1516.doi:10.1021/je050474j

(23) Freire,M.G.;Santos,L.M.N.B.F.;Fernandes,A.M.;Coutinho,J.A.P.;Marrucho,I.M.Fluid Phase Equilib.2007,261,449.doi:10.1016/j.fluid.2007.07.033

(24) Swatloski,R.P.;Visser,A.E.;Reichert,W.M.;Broker,G.A.;Farina,L.M.;Holbrey,J.D.;Rogers,R.D.Chem.Commun.2001,2070.

(25) Swatloski,R.P.;Visser,A.E.;Reichert,W.M.;Broker,G.A.;Farina,L.M.;Holbrey,J.D.;Rogers,R.D.Green Chem.2002,4,81.doi:10.1039/b108905f

(26) Najdanovic-Visak,V.;Esperanca,J.;Rebelo,L.P.N.;da Ponte,M.N.;Guedes,H.J.R.;Seddon,K.R.;de Sousa,H.C.;Szydlowski,J.J.Phys.Chem.B2003,107,12797.doi:10.1021/jp034576x

(27) Najdanovic-Visak,V.;Esperanca,J.;Rebelo,L.P.N.;da Ponte,M.N.;Guedes,H.J.R.;Seddon,K.R.;Szydlowski,J.Phys.Chem.Chem.Phys.2002,4,1701.doi:10.1039/b201723g

(28)Freire,M.G.;Neves,C.M.S.S.;Marrucho,I.M.;Coutinho,J.A.P.;Fernandes,A.M.J.Phys.Chem.A2010,114,3744.doi:10.1021/jp903292n

(29) Cammarata,L.;Kazarian,S.G.;Salter,P.A.;Welton,T.Phys.Chem.Chem.Phys.2001,3,5192.doi:10.1039/b106900d

(30) Zhu,X.Y.;Sun,H.;Zhang,D.J.;Liu,C.B.J.Mol.Model.2011,17,1997.doi:10.1007/s00894-010-0879-1

(31)Hanke,C.G.;Atamas,N.A.;Lynden-Bell,R.M.Green Chem.2002,4,107.doi:10.1039/b109179b

猜你喜歡
化學
化學與日常生活
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
化學:我有我“浪漫”
化學:舉一反三,有效學習
考試周刊(2016年63期)2016-08-15 22:51:06
化學與健康
絢麗化學綻放
主站蜘蛛池模板: 四虎永久免费地址| 亚洲无码久久久久| 久久香蕉国产线| 中文国产成人久久精品小说| 日韩无码黄色网站| 高潮爽到爆的喷水女主播视频 | 美女被操91视频| 亚洲一区波多野结衣二区三区| 日日噜噜夜夜狠狠视频| 亚洲swag精品自拍一区| 永久免费AⅤ无码网站在线观看| 欧美成人免费一区在线播放| 欧美日韩中文国产va另类| 18黑白丝水手服自慰喷水网站| 国产精品密蕾丝视频| 又黄又湿又爽的视频| 午夜老司机永久免费看片| 91口爆吞精国产对白第三集| 亚洲国产成熟视频在线多多| 久久国产黑丝袜视频| 欧美黄色网站在线看| 日韩精品欧美国产在线| 亚洲中久无码永久在线观看软件| 无码AV高清毛片中国一级毛片| 囯产av无码片毛片一级| 综合社区亚洲熟妇p| 日本高清视频在线www色| 天堂在线www网亚洲| 国产成人午夜福利免费无码r| 91精品视频在线播放| 国产精品成人免费视频99| 亚洲国产精品成人久久综合影院| 精品国产免费第一区二区三区日韩| 波多野结衣国产精品| 色国产视频| 亚洲小视频网站| 亚洲精品成人片在线播放| 亚洲系列中文字幕一区二区| 亚洲国内精品自在自线官| 午夜视频www| 无码AV日韩一二三区| 中文字幕资源站| 99视频全部免费| 婷婷午夜天| 日韩精品无码不卡无码| 久久91精品牛牛| 国产成人乱码一区二区三区在线| 国产哺乳奶水91在线播放| 啊嗯不日本网站| 丁香婷婷在线视频| 亚洲成人黄色在线观看| 国产人成在线观看| 天天躁日日躁狠狠躁中文字幕| 国产一级做美女做受视频| 日韩美一区二区| 国产成人午夜福利免费无码r| 欧美日本激情| 亚洲中文字幕日产无码2021| 欧美视频二区| 亚洲一级毛片| 久久99精品国产麻豆宅宅| 伊人91视频| 亚洲福利视频一区二区| 免费一级无码在线网站 | 2021亚洲精品不卡a| 精品人妻无码区在线视频| 国内精品久久久久久久久久影视| 99热这里只有精品5| 国产免费网址| 老司国产精品视频| 91免费国产高清观看| 亚洲欧美在线综合一区二区三区| 美女一区二区在线观看| 国产在线麻豆波多野结衣| 色综合天天视频在线观看| 国产91九色在线播放| 久青草免费在线视频| 亚洲人成网18禁| 欧美啪啪网| 国产激情第一页| 一级毛片在线播放免费观看| 亚洲精品老司机|