999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Bitranslations of com p letely sim p le sem igroups and some applications

2013-06-01 12:30:13YANGYuhuiZHANGJiangang
關(guān)鍵詞:數(shù)理性質(zhì)利用

YANG Yuhui,ZHANG Jiangang

(College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

Bitranslations of com p letely sim p le sem igroups and some applications

YANG Yuhui,ZHANG Jiangang

(College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

We discuss the bitranslations of completely simple semigroups by the representations given by Petrich M.As an application,we get the structure of an inflation of a completely simple semigroup.Furthermore,we consider the isomorphism between two inflations of completely simple semigroups.

completely simple semigroup;bitranslation;inflation

1 Introduction and notations

Lallement G.reduced the structure of completely regular semigroups to that of completely simple semigroups and certain functions among them and their translational hulls in[1].Petrich M gave the representation of the wreath product of left,right translations and bitranslations of a completely simple semigroup in[2]and[3].Zhang JG,etc.considered the properties of bitranslations of completely simple semigroups in[4]by the representation of the wreath product.In this paper,we discuss the bitranslations of completely simple semigroups by another representation of them given by Petrich M.Furthermore,we get the structures of inflations of completely simple semigroups and isomorphisms between two inflations of completely simple semigroups.

An element a of a semigroup S is said to be regular if there exists an x in S such that a=axa.The semigroup S is said to be regular if all its elements are regular.A regular semigroup S is said to be completely regular if every element of S lies in a subgroup of S.A completely simple semigroup is completely regular and simple.By Rees′s theorem,every completely simple semigroup is isomorphic to a Reesmatrix semigroup.

Let S be a semigroup and x,y be arbitrary elements of S.A mapλon S,written on the left,is a left translation ifλ(xy)=(λx)y;amapρon S,written on the right,is a right translation if(xy)ρ=x(yρ);the pair (λ,ρ)is a bitranslation if in addition x(λy)=(xρ)y,λandρa(bǔ)re also said to be linked.The setΛ(S)of all left translations of S is a semigroup under the composition(λλ′)x=λ(λ′x);the set P(S)of all right translations of S is a semigroup under the composition x(ρρ′)=(xρ)ρ′;the subsemigroupΩ(S)ofΛ(S)× P(S)consisting of all bitranslations is the translational hull of S.Specially,λaandρa(bǔ)are linked obviously,whereλax=ax and xρa(bǔ)=xa,for some a∈S.

Throughout this paper,the symbol S denotes a Reesmatrix semigroup M(I,G,Λ;P),where G is a group with identity e and P=(pλi)is the sandwichmatrix.The elements of S are denoted by(i,g,λ),where i∈I,g∈G andλ∈Λ.Let J?I and M?Λ.The symbol SJ×Mdenotes the subset{(i,g,λ)∈S:i∈J,g∈G,λ∈ M}of S.The setof idempotents of a semigroup S is denoted by E(S).An idempotent(i,λ)of S is denoted by eiλ.Let J?I and M?Λ.Then the symbol EJ×Mdenotes the subset{eiλ∈E(S):i∈J,λ∈M}of E (S).

Notation 1.1[5]In this section,we set S=M(I,G,Λ;P)with P normalized at1∈I∩Λ.Let

with multiplication(F,g,Φ)(F′,g′,Φ′)=(FF′,gp1Φ,F(xiàn)′1g′,ΦΦ′),where J′(I)is the set of allmaps in I and J(Λ)is the set of allmaps inΛ.

Lemma 1.1[5]Let S=M(I,G,Λ;P)with P normalized,and let e be the identity of G.Define amappingσby

where F,g andΦare defined by the requirements

Further,we define amappingτby

whereλandρa(bǔ)re defined by the formulae

Thenσandτaremutually inverse isomorphisms betweenΩ(S)and T(S).Moreover

In this paper,we use the triple(F,g,Φ)to describe the Green′s relations and inner bitranslations of completely simple semigroups.Let a∈S and P be a Green′s relation,the symbol Padenotes the P-class of S containing a.

The reader is refered to[5-7]for definitions and symbols notmentioned here.

2 Bitranslations of completely simple semigroups

Let i,j∈I,λ,μ∈Λ,and set

Then it is easy to verify the following results.

Lemma 2.1Let S be a completely simple semigroup.The following conditions are equivalent:

(1)qλμij=e,

(2)rλμij=e,

(3)E{i,j}×{λ,μ}is a subband of S.

Proposition 2.1Let(F,g,Φ)∈T(S).Then for any i,j∈I,λ,μ∈Λ,we have

Similarly,(2)can be proved.

The converse part is easy to see.

LetιI,ιΛbe the identitymappings on I,Λ.Then we have the following corollary.

Corollary 2.2The identity of T(S)is(ιI,e,ιΛ).

3 Some applications

A semigroup S is an inflation of a semigroup K if K is a subsemigroup of S and there is amappingφ*of S into K such that

Let Q be a partial semigroup and K=M(I,G,Λ;P)be a Reesmatrix semigroup over a group G,such that Q∩K=?.Letξ:p|→i be amapping from Q into I on the left,η:pλbe amapping from Q intoΛon the right andφ:p|→g be amapping from Q into G on the right side.

Let us define amultiplication on S=Q∪K with

(4)pq=(ξ(p),(p)φp(p)η,ξ(q)(q)φ,(q)η), for all p,q∈Q;g,h∈G;i,j∈I andλ,μ∈Λ.Then S with themultiplication defined above will be denoted by M(I,G,Λ;P;Q;φ,ξ,η).

Lemma 3.1M(I,G,Λ;P;Q;φ,ξ,η)is a semigroup.

ProofIt is clear that themultiplication iswell defined.

The other cases can be proved similarly.So M(I,G,Λ;P;Q;φ,ξ,η)is a semigroup.

Theorem 3.1S is an inflation of a completely simple semigroup K if and only if S is isomorphic to some M(I,G,Λ;P;Q;φ,ξ,η),where K=M(I,G,Λ;P).

ProofLet S be an inflation of a completely simple semigroup K.Then the Reesmatrix semigroup K is the kernel of S,and Q=S\K is a partial semigroup.For any p∈Q and(j,h,μ)∈K,ifφ*(p)=(i,g,λ),we have

Hence we get S=M(I,G,Λ;P;Q;φ,ξ,η).

Conversely,if S=M(I,G,Λ;P;Q;φ,ξ,η),by Lemma 3. 1,S is a semigroup and K=M(I,G,Λ;P)is the kernel of S.Define amappingφ*:SK satisfying that

(1)for any(i,g,λ)∈K,φ*(i,g,λ)=(i,g,λ),

(2)for any p∈Q,φ*p=(ξ(p),(p)φ,(p)η).

Sinceξ,φ,ηaremappings,soφ*iswell defined.

For any(i,g,λ),(j,h,μ)∈K,p,q∈Q,we have

Hence,S is an inflation of the completely simple semigroup M(I,G,Λ;P).

Theorem 3.2

[1] LALLEMENT G.Demi-groups reguliers[J].Ann Mat Pura Appl, 1967,77:47-129.

[2] PETRICH M.The translational hull of a completely 0-simple semigroup[J].Glasgow Math, 1968,9:1-11.

[3] PETRICH M.The structure of completely regular semigroups[J].TAMS, 1974,189:221-236.

[4] SONG G T,ZHANG JG,LIU G X.Bitranslations of Completely Simple Semigroups[J].Southest Asion Bulletion ofMathematics, 2006,30:107-122.

[5] PETRICH M,REILLY N.Completely Regular semigroups[M].New york:John Weley&Sonc INC,1999.

[6] HOWIE JM.Fundamentals of Semigroup Theory[M].Oxford:Oxford University Press Inc,1995.

[7] STOJAN BOGANOVIC.Semigroupswith a System of Subsemigroups[M].Novi Sad:University of Novi sad Institude of Mathematic,1985.

(責(zé)任編輯:馮珍珍)

完全單半群的平移包及其應(yīng)用

楊禹慧,張建剛

(上海師范大學(xué)數(shù)理學(xué)院,上海200234)

利用Petrich M.關(guān)于完全單半群的平移包的表示進(jìn)一步研究了完全單半群平移包的性質(zhì).作為應(yīng)用,給出了完全單半群膨脹的結(jié)構(gòu)和它們之間的同構(gòu).

完全單半群;平移包;膨脹

O 152.7

A

1000-5137(2013)02-0111-09

Received date:2013-01-12

Foundation item:National Natural Science Foundation of China( 11201305,11001046);Innovation Projectof Shanghai Education Committee(12YZ081)

Biography:YANG Yuhui(1987-),female,graduate student,College of Mathematics and Sciences,Shanghai Normal University;ZHANG Jiangang(1977-),male,associate professor,College ofMathematics and Sciences,ShanghaiNormal University.

猜你喜歡
數(shù)理性質(zhì)利用
踐行“德融數(shù)理” 打造“行知樂園”
利用min{a,b}的積分表示解決一類絕對(duì)值不等式
隨機(jī)變量的分布列性質(zhì)的應(yīng)用
完全平方數(shù)的性質(zhì)及其應(yīng)用
利用一半進(jìn)行移多補(bǔ)少
數(shù)理:多少人吃飯
孩子(2019年9期)2019-11-07 01:35:49
九點(diǎn)圓的性質(zhì)和應(yīng)用
利用數(shù)的分解來思考
Roommate is necessary when far away from home
厲害了,我的性質(zhì)
主站蜘蛛池模板: 激情无码字幕综合| 欧美色香蕉| 狠狠综合久久久久综| 青青草国产在线视频| 狠狠v日韩v欧美v| 久久久国产精品无码专区| 亚洲男人的天堂网| 亚洲中文字幕无码爆乳| 在线观看国产精品第一区免费| 国产毛片网站| 五月激情综合网| 日韩在线永久免费播放| 国产丝袜第一页| 凹凸国产分类在线观看| 婷婷激情五月网| 波多野结衣中文字幕一区| 久久99热66这里只有精品一| 朝桐光一区二区| 久久人与动人物A级毛片| 国产女同自拍视频| 国产91在线免费视频| 黄色污网站在线观看| a级免费视频| 国产91线观看| 国内99精品激情视频精品| 亚洲毛片网站| 日韩欧美中文| 国产杨幂丝袜av在线播放| 四虎精品黑人视频| 无码内射在线| 国产日韩精品欧美一区灰| 亚洲精品国产综合99| 欧美高清国产| 在线一级毛片| 国产精品真实对白精彩久久| 日韩欧美国产精品| 免费在线不卡视频| 免费看黄片一区二区三区| 在线观看免费人成视频色快速| 欧美一级色视频| 2024av在线无码中文最新| 欧美一区二区三区国产精品| 亚洲乱码精品久久久久..| 日韩第九页| 国产JIZzJIzz视频全部免费| 亚洲成人精品| 深夜福利视频一区二区| 国产a v无码专区亚洲av| 2021精品国产自在现线看| 91极品美女高潮叫床在线观看| a免费毛片在线播放| 亚洲天堂区| 欧美色视频在线| 国产特级毛片aaaaaa| 美女被操91视频| 青青草原偷拍视频| 亚洲国产精品成人久久综合影院| 她的性爱视频| 91久久夜色精品国产网站| 国产精品自在在线午夜区app| www.99精品视频在线播放| 中文毛片无遮挡播放免费| 国产乱人激情H在线观看| 亚洲永久免费网站| 亚洲熟女中文字幕男人总站| 午夜福利亚洲精品| 欧美成在线视频| 国产亚洲精品va在线| 一级香蕉视频在线观看| 国产成人精品亚洲日本对白优播| 国产精品第一区在线观看| 国产丝袜无码一区二区视频| 国产精品免费入口视频| 国内精品小视频在线| 一级毛片在线直接观看| 亚洲AV无码久久天堂| 国产免费a级片| 国产福利一区二区在线观看| 成色7777精品在线| 国产爽爽视频| 播五月综合| 国产亚洲视频免费播放|