999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Bitranslations of com p letely sim p le sem igroups and some applications

2013-06-01 12:30:13YANGYuhuiZHANGJiangang
關(guān)鍵詞:數(shù)理性質(zhì)利用

YANG Yuhui,ZHANG Jiangang

(College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

Bitranslations of com p letely sim p le sem igroups and some applications

YANG Yuhui,ZHANG Jiangang

(College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

We discuss the bitranslations of completely simple semigroups by the representations given by Petrich M.As an application,we get the structure of an inflation of a completely simple semigroup.Furthermore,we consider the isomorphism between two inflations of completely simple semigroups.

completely simple semigroup;bitranslation;inflation

1 Introduction and notations

Lallement G.reduced the structure of completely regular semigroups to that of completely simple semigroups and certain functions among them and their translational hulls in[1].Petrich M gave the representation of the wreath product of left,right translations and bitranslations of a completely simple semigroup in[2]and[3].Zhang JG,etc.considered the properties of bitranslations of completely simple semigroups in[4]by the representation of the wreath product.In this paper,we discuss the bitranslations of completely simple semigroups by another representation of them given by Petrich M.Furthermore,we get the structures of inflations of completely simple semigroups and isomorphisms between two inflations of completely simple semigroups.

An element a of a semigroup S is said to be regular if there exists an x in S such that a=axa.The semigroup S is said to be regular if all its elements are regular.A regular semigroup S is said to be completely regular if every element of S lies in a subgroup of S.A completely simple semigroup is completely regular and simple.By Rees′s theorem,every completely simple semigroup is isomorphic to a Reesmatrix semigroup.

Let S be a semigroup and x,y be arbitrary elements of S.A mapλon S,written on the left,is a left translation ifλ(xy)=(λx)y;amapρon S,written on the right,is a right translation if(xy)ρ=x(yρ);the pair (λ,ρ)is a bitranslation if in addition x(λy)=(xρ)y,λandρa(bǔ)re also said to be linked.The setΛ(S)of all left translations of S is a semigroup under the composition(λλ′)x=λ(λ′x);the set P(S)of all right translations of S is a semigroup under the composition x(ρρ′)=(xρ)ρ′;the subsemigroupΩ(S)ofΛ(S)× P(S)consisting of all bitranslations is the translational hull of S.Specially,λaandρa(bǔ)are linked obviously,whereλax=ax and xρa(bǔ)=xa,for some a∈S.

Throughout this paper,the symbol S denotes a Reesmatrix semigroup M(I,G,Λ;P),where G is a group with identity e and P=(pλi)is the sandwichmatrix.The elements of S are denoted by(i,g,λ),where i∈I,g∈G andλ∈Λ.Let J?I and M?Λ.The symbol SJ×Mdenotes the subset{(i,g,λ)∈S:i∈J,g∈G,λ∈ M}of S.The setof idempotents of a semigroup S is denoted by E(S).An idempotent(i,λ)of S is denoted by eiλ.Let J?I and M?Λ.Then the symbol EJ×Mdenotes the subset{eiλ∈E(S):i∈J,λ∈M}of E (S).

Notation 1.1[5]In this section,we set S=M(I,G,Λ;P)with P normalized at1∈I∩Λ.Let

with multiplication(F,g,Φ)(F′,g′,Φ′)=(FF′,gp1Φ,F(xiàn)′1g′,ΦΦ′),where J′(I)is the set of allmaps in I and J(Λ)is the set of allmaps inΛ.

Lemma 1.1[5]Let S=M(I,G,Λ;P)with P normalized,and let e be the identity of G.Define amappingσby

where F,g andΦare defined by the requirements

Further,we define amappingτby

whereλandρa(bǔ)re defined by the formulae

Thenσandτaremutually inverse isomorphisms betweenΩ(S)and T(S).Moreover

In this paper,we use the triple(F,g,Φ)to describe the Green′s relations and inner bitranslations of completely simple semigroups.Let a∈S and P be a Green′s relation,the symbol Padenotes the P-class of S containing a.

The reader is refered to[5-7]for definitions and symbols notmentioned here.

2 Bitranslations of completely simple semigroups

Let i,j∈I,λ,μ∈Λ,and set

Then it is easy to verify the following results.

Lemma 2.1Let S be a completely simple semigroup.The following conditions are equivalent:

(1)qλμij=e,

(2)rλμij=e,

(3)E{i,j}×{λ,μ}is a subband of S.

Proposition 2.1Let(F,g,Φ)∈T(S).Then for any i,j∈I,λ,μ∈Λ,we have

Similarly,(2)can be proved.

The converse part is easy to see.

LetιI,ιΛbe the identitymappings on I,Λ.Then we have the following corollary.

Corollary 2.2The identity of T(S)is(ιI,e,ιΛ).

3 Some applications

A semigroup S is an inflation of a semigroup K if K is a subsemigroup of S and there is amappingφ*of S into K such that

Let Q be a partial semigroup and K=M(I,G,Λ;P)be a Reesmatrix semigroup over a group G,such that Q∩K=?.Letξ:p|→i be amapping from Q into I on the left,η:pλbe amapping from Q intoΛon the right andφ:p|→g be amapping from Q into G on the right side.

Let us define amultiplication on S=Q∪K with

(4)pq=(ξ(p),(p)φp(p)η,ξ(q)(q)φ,(q)η), for all p,q∈Q;g,h∈G;i,j∈I andλ,μ∈Λ.Then S with themultiplication defined above will be denoted by M(I,G,Λ;P;Q;φ,ξ,η).

Lemma 3.1M(I,G,Λ;P;Q;φ,ξ,η)is a semigroup.

ProofIt is clear that themultiplication iswell defined.

The other cases can be proved similarly.So M(I,G,Λ;P;Q;φ,ξ,η)is a semigroup.

Theorem 3.1S is an inflation of a completely simple semigroup K if and only if S is isomorphic to some M(I,G,Λ;P;Q;φ,ξ,η),where K=M(I,G,Λ;P).

ProofLet S be an inflation of a completely simple semigroup K.Then the Reesmatrix semigroup K is the kernel of S,and Q=S\K is a partial semigroup.For any p∈Q and(j,h,μ)∈K,ifφ*(p)=(i,g,λ),we have

Hence we get S=M(I,G,Λ;P;Q;φ,ξ,η).

Conversely,if S=M(I,G,Λ;P;Q;φ,ξ,η),by Lemma 3. 1,S is a semigroup and K=M(I,G,Λ;P)is the kernel of S.Define amappingφ*:SK satisfying that

(1)for any(i,g,λ)∈K,φ*(i,g,λ)=(i,g,λ),

(2)for any p∈Q,φ*p=(ξ(p),(p)φ,(p)η).

Sinceξ,φ,ηaremappings,soφ*iswell defined.

For any(i,g,λ),(j,h,μ)∈K,p,q∈Q,we have

Hence,S is an inflation of the completely simple semigroup M(I,G,Λ;P).

Theorem 3.2

[1] LALLEMENT G.Demi-groups reguliers[J].Ann Mat Pura Appl, 1967,77:47-129.

[2] PETRICH M.The translational hull of a completely 0-simple semigroup[J].Glasgow Math, 1968,9:1-11.

[3] PETRICH M.The structure of completely regular semigroups[J].TAMS, 1974,189:221-236.

[4] SONG G T,ZHANG JG,LIU G X.Bitranslations of Completely Simple Semigroups[J].Southest Asion Bulletion ofMathematics, 2006,30:107-122.

[5] PETRICH M,REILLY N.Completely Regular semigroups[M].New york:John Weley&Sonc INC,1999.

[6] HOWIE JM.Fundamentals of Semigroup Theory[M].Oxford:Oxford University Press Inc,1995.

[7] STOJAN BOGANOVIC.Semigroupswith a System of Subsemigroups[M].Novi Sad:University of Novi sad Institude of Mathematic,1985.

(責(zé)任編輯:馮珍珍)

完全單半群的平移包及其應(yīng)用

楊禹慧,張建剛

(上海師范大學(xué)數(shù)理學(xué)院,上海200234)

利用Petrich M.關(guān)于完全單半群的平移包的表示進(jìn)一步研究了完全單半群平移包的性質(zhì).作為應(yīng)用,給出了完全單半群膨脹的結(jié)構(gòu)和它們之間的同構(gòu).

完全單半群;平移包;膨脹

O 152.7

A

1000-5137(2013)02-0111-09

Received date:2013-01-12

Foundation item:National Natural Science Foundation of China( 11201305,11001046);Innovation Projectof Shanghai Education Committee(12YZ081)

Biography:YANG Yuhui(1987-),female,graduate student,College of Mathematics and Sciences,Shanghai Normal University;ZHANG Jiangang(1977-),male,associate professor,College ofMathematics and Sciences,ShanghaiNormal University.

猜你喜歡
數(shù)理性質(zhì)利用
踐行“德融數(shù)理” 打造“行知樂園”
利用min{a,b}的積分表示解決一類絕對(duì)值不等式
隨機(jī)變量的分布列性質(zhì)的應(yīng)用
完全平方數(shù)的性質(zhì)及其應(yīng)用
利用一半進(jìn)行移多補(bǔ)少
數(shù)理:多少人吃飯
孩子(2019年9期)2019-11-07 01:35:49
九點(diǎn)圓的性質(zhì)和應(yīng)用
利用數(shù)的分解來思考
Roommate is necessary when far away from home
厲害了,我的性質(zhì)
主站蜘蛛池模板: 国产精品3p视频| 91一级片| 欧美日韩中文字幕在线| 97在线公开视频| 国产精品成人一区二区| 免费看a级毛片| 一区二区自拍| 午夜视频在线观看免费网站| 久久久黄色片| 91网址在线播放| 亚洲国产黄色| 暴力调教一区二区三区| 国产亚洲精品自在久久不卡| 亚洲精品片911| 久久亚洲美女精品国产精品| 欧美日一级片| 台湾AV国片精品女同性| 国产高清毛片| 欧美另类图片视频无弹跳第一页| 国产网站免费观看| 国产中文一区二区苍井空| 1024国产在线| 欧美无专区| 麻豆国产原创视频在线播放| 亚洲欧洲日韩综合| 中文字幕久久亚洲一区| 国产成人亚洲精品无码电影| 99re66精品视频在线观看| 精品亚洲麻豆1区2区3区| 日韩天堂视频| 久爱午夜精品免费视频| 青青草国产精品久久久久| 亚洲高清中文字幕在线看不卡| 亚洲欧美日韩中文字幕在线| 青青草原国产| 99在线视频精品| 欧美成人午夜在线全部免费| 露脸真实国语乱在线观看| 丁香亚洲综合五月天婷婷| 老司机aⅴ在线精品导航| 亚洲福利视频一区二区| 欧美精品成人| 国产精品99在线观看| 青青国产成人免费精品视频| 免费无码AV片在线观看国产| 国产幂在线无码精品| 亚洲丝袜第一页| 国产成人精品第一区二区| 欧美日韩v| 伊人网址在线| 亚洲AV无码乱码在线观看裸奔| 午夜天堂视频| 日韩A级毛片一区二区三区| 亚洲女同欧美在线| 国产91丝袜| 一级毛片免费不卡在线| 精品自窥自偷在线看| 五月激情综合网| 国产精品爆乳99久久| 亚洲一区二区三区国产精华液| 一级毛片中文字幕| 国产一区二区人大臿蕉香蕉| 极品国产在线| 99在线视频精品| 国产女同自拍视频| 国产精品视频公开费视频| 国产精品白浆无码流出在线看| 日韩福利在线视频| 99精品这里只有精品高清视频| 天堂av综合网| 国产福利不卡视频| 久久这里只有精品66| 欧美不卡视频在线| 欧美国产另类| 亚洲无码精彩视频在线观看 | 免费国产高清精品一区在线| 国产毛片高清一级国语| 中文字幕永久视频| 午夜丁香婷婷| 国产免费精彩视频| 在线亚洲天堂| 欧美在线三级|