杜 雪,李進軍,盧立志,趙阿勇
(1.浙江農林大學 林業與生物技術學院,浙江 臨安 311300;2.浙江省農業科學院 畜牧獸醫研究所,浙江 杭州 310021)
膽固醇7α-羥化酶又稱膽固醇7α-單氧酶或細胞色素P4507A1酶,屬肝臟特異性微粒體細胞色素P450酶系,該酶催化膽固醇在肝臟分解為膽汁酸,是該反應的限速酶。大量研究證明,膽固醇-膽汁酸平衡對機體健康具有重要作用,血液膽固醇水平過高會引起高膽固醇血癥、動脈硬化、膽結石等疾病,而膽汁酸水平過低則可能會導致膽囊癌、結直腸癌的發生。CYP7A1基因自身多態性、多種核受體、細胞因子、激素共同組成了CYP7A1表達的轉錄激活/抑制級聯網絡,維持體內膽汁酸-膽固醇平衡及脂質動態平衡。下面對CYP7A1基因的結構、表達、調控以及與脂類代謝疾病相關的研究進行綜述。
Noshiro等利用特殊的抗體,首次從鼠肝細胞微粒體中獲得了CYP7A1基因的cDNA片段。目前,包括人類 Homo sapiens及大鼠 Rattus norvegicus,小鼠Mus musculus,牛 Bos taurus,鵝 Anser anser,鮐Lacertus est等在內的CYP7A1基因都已克隆獲得。其中人類CYP7A1基因位于染色體8q11~q12,鵝和鮐CYP7A1基因都位于2號染色體。小鼠與大鼠CYP7A1基因同源率為93%.小鼠與人CYP7A1基因同源率為82%,其中外顯子和內含子相交處的序列完全一致。
CYP7A1基因全長約10 kb,含6個外顯子和5個內含子,開放閱讀框長1509 bp,編碼503個氨基酸。在5′非翻譯區側翼區除有高度保守的調控元件TATAA和CCAAT外,還有一些能與肝臟特異轉錄因子結合的位點[1],其中的siteⅠ位點就是LXRα-RXR復合物結合位點[2]。在3′非翻譯區中含9個AU富集因子(AREs),這被認為是膽汁酸對CYP7A1基因表達進行負調控的靶位點[3]。
Asahina等[4]研究發現,CYP7A1在胚胎階段就已經開始在肝臟中特異表達。CYP7A1表達呈帶狀分布模式,且在肝臟中央靜脈血管外1~2層肝臟細胞中的表達量最大[5]。Fu等[6]發現雌性小鼠體內的CYP7A1在3~9個月內隨年齡的增長而增加,9個月后維持高水平,而雄性小鼠的CYP7A1則不隨年齡而改變,表明CYP7A1基因表達具有性別差異。CYP7A1的表達還具有晝夜調節規律,正常飼喂小鼠CYP7A1在mRNA和蛋白質水平在下午10∶00時 表達量最高,在上午10∶00時 表達量最低。飼喂高膽固醇食物的小鼠在下午10∶00時表達量不變,但在上午10∶00時的表達量增加,并且表達量與下午10 ∶00 時幾乎相同[7-11].
2.2.1 CYP7A1基因的正調控 肝X受體α(liver X receptorα,LXRα)和維甲酸X受體α(retinaldehyde X receptorα,RXRα)結合后形成LXRα-RXRα,LXRα-RXRα通過與CYP7A1基因啟動子區的siteⅠ位點結合,以配體依賴方式激活轉錄。肝同系物受體Ⅰ(liver receptor homologⅠ,LRH-Ⅰ)以單體形式結合到CYP7A1基因上,是CYP7A1表達的基本調節因子,它作為一個活性因子允許LXR激活CYP7A1轉錄[12]。在給小鼠的食物中添加PPARα配體后,Hunt等[13]發現CYP7A1基因的表達量是對照組的2~3倍;另外,野生小鼠和PPARα基因敲除小鼠分別經過一段饑餓期后,前者CYP7A1表達增加,后者不增加,這說明PPARα調控CYP7A1基因轉錄。后來研究證明,PPARα被激活后和RXR形成PPARα-RXR復合物,與CYP7A1基因啟動子區域的調節元件(PPAR response element,PPRE)結合,調節CYP7A1轉錄[14-15];動物試驗證明增加動物膽固醇的攝入量后可促進CYP7A1基因轉錄[16],這是因為膽固醇代謝的中間產物是LXRα的配體,可以激活LXRα,從而促進CYP7A1表達[17]。
2.2.2 CYP7A1基因的負調控 異源二聚體小分子伴侶(small heterodimer partner,SHP)對CYP7A1基因有抑制作用,SHP特異性作用于LRH-1基因AF2激活區,阻止LXR激活CYP7A1轉錄,但AF2激活區也是其他復合激活因子的作用部位,所以SHP與其他復合激活因子爭奪和LRH-1結合的機會[12]。在正常和受壓狀態下,抑癌因子P53都能通過增加SHP量來降低CYP7A1水平[18]。動物膽汁酸池過大時會反饋抑制CYP7A1酶,降低膽汁酸水平[16],這是因為膽汁酸能夠引起肝臟Kupffer細胞釋放白介素1(nterleukin-1,IL-1)和腫瘤壞死因子α(tumor necrosis factorα,TNFα),該2種因子能夠通過各自的途徑對CYP7A1的表達進行調控[17];法尼酯衍生物X受體(farnesoid X receptor,FXR)也必須與RXR結合才能發揮作用,它被膽汁酸激活后,通過誘導SHP表達來抑制LRH-Ⅰ基因,從而抑制CYP7A1基因表達[19]。膽汁酸除與FXR配合起作用外,還能直接激活c-Jun氨基末端激酶(JNK)通路,JNK通過抑制肝核因子4-α(HNF4-α)和PPARα的協同作用來抑制CYP7A1基因表達[20]。小鼠FXR能激活纖維母細胞生長因子(fibroblast growth factor 15,FGF15,人體的類似物是FGF19),后者能通過肝臟纖維母細胞生長因子受體 4(fibroblast growth factor receptor 4,FGFR4)來抑制 CYP7A1基因的表達[21],FGF15基因缺陷小鼠CYP7A1m RNA含量比正常小鼠上升3.5倍[22];纖維母細胞生長因子7(fibroblast growth factor,FGF7)是肝臟CYP7A1基因表達的特異調控因子,當肝臟受傷時可以通過降低CYP7A1基因轉錄來減少膽汁酸累積[23]。胰島素β細胞轉錄因子FOX1在胰島素信號級聯通路中發揮重要作用,敲除該基因后,人原代肝細胞CYP7A1表達提高6倍,這說明胰島素對CYP7A1基因表達具有抑制作用[24]。雖然在小鼠中三碘甲腺原氨酸(T3)對CYP7A1有誘導作用,但是在人HepG2細胞中的研究提示T3對CYP7A1表達有抑制作用[25-26]。圖1是CYP7A1基因調控通路簡況。
膽汁酸有2種合成途徑:經典途徑和替代途徑,其中經典途徑是主要途徑,其合成的膽汁酸占總合成量的70%。CYP7A1作為限速酶催化膽汁酸經典合成途徑的第一步反應,其作用是將膽固醇轉化成7α-羥化膽固醇。人類的CYP7A1活性是哺乳動物中最高的(5.8 s-1)[27],為人體排除多余膽固醇400~600 mg·d-1[28-29]。此外,膽汁酸合成經典途徑的中間產物固醇和終產物膽汁酸能作為核受體的配體參與調控膽固醇代謝相關的重要基因的表達[30]。膽固醇-膽汁酸平衡依托CYP7A1的表達和活性正常,CYP7A1基因發生改變后很有可能會使人體患上一些疾病,比如膽結石、膽囊癌和心血管疾病等.相應的,CYP7A1基因也成為治療這類疾病的有效靶位點。

圖1 CYP7A1基因調控通路簡述Figure1 Diagram of CYP7A1 gene regulation pathway
陳玉娟等[31]研究發現了人類CYP7A1基因啟動子區-204位點處存在A/C突變,并認為含有A等位基因的啟動子比含有C基因的啟動子活性低1/3。Srivastava等[32]發現2處CYP7A1基因啟動子多態位點,-204 A>C和-469 T?C,研究結果顯示前者對印度北部人群膽囊癌發生率有影響,而后者則沒明顯影響;李貴星等[33]的研究提示-204 A>C多態基因座與冠狀動脈硬化性心臟病無相關性,但與總膽固醇存在較密切的關聯。王程強等[34]對該基因多態位點的研究提示-204 A>C多態性與兒童血脂水平存在密切關系; Kim等[35]認為-204 A>C處并認為CC基因型人比AC基因型人患神經炎的可能性小。在研究高甘油三酯血癥患者時,Horfman等[36]發現,在CYP7A1-278處為AA純合子者比AC雜合子和CC雜合子患者具有較高的膽固醇水平。Juzyzzyn等[37]通過分析癥狀性膽石癥患者基因發現與之前研究認為CYP7A1-278A>C多態性與漢族人膽石癥相關這一觀點不同的是,在波蘭白種人中該位點與膽石癥無關;Shen等[38]發現CYP7A1基因的多態性與非諾貝特降低甘油三酯、增加高密度脂蛋白膽固醇的程度有關;Lu等[39]研究發現CYP7A1基因的某些多態位點與血液脂類成分不同有關。另外,CYP7A1基因的SNPs決定機體排泄多少膽汁酸,而過多的膽汁酸積累可能會導致結直腸癌(CRA)發生,而且熊脫氧膽酸(UDCA)防止CRA的能力受CYP7A1基因多態性的影響[40]。
研究認為成藥膽寧片治療大鼠高脂飲食性脂肪肝的機制與其誘導CYP7A1表達有關[41]。梁曉強等[42]研究發現養肝利膽顆粒是通過增強CYP7A1和PPARγ的表達而發揮防治膽石病的作用的。Li等[43]通過對轉基因小鼠CYP7A1-tg的研究發現,通過增大疏水性膽汁酸池而促進CYP7A1表達可能會是一種治療代謝紊亂疾病,比如脂肪肝、肥胖、糖尿病的有效方法。Feingold等[44]提出了人在炎癥狀態下血清膽固醇水平升高的原因。他們認為內毒素和腫瘤壞死因子α,白介素-1在倉鼠體內可降低CYP7A1 mRNA水平,使肝臟處理膽固醇的能力下降。Cao等[45]研究發現黃連生物堿之所以能治療高血膽脂醇癥是因為它能上調CYP7A1和PPARα(過氧化物酶體增殖物激活受體α)的表達,降低FXR(法尼酯X受體)的表達。在研究糖尿病的機制時,Li等[46]發現患糖尿病的小鼠體內CYP7A1基因的染色質是高度乙酰化的。近年來科學家還發現,胡椒堿提取物GB-N可以降低小鼠血脂,其機制之一是GB-N能顯著提高CYP7A1的表達量[47]。牛磺酸通過3個途徑來降低膽固醇含量,其中之一就是提高肝臟中CYP7A1表達量從而促進膽固醇合成膽汁酸[48]。通過對實驗小鼠飼喂花青素-3-O-β-葡糖苷,Wang 等[49]發現花青素-3-O-β-葡糖苷能治療高血膽脂癥的機制在于它能激活LXRα-CYP7A1-膽汁酸分泌途徑。而Del等[50]的研究發現實驗動物攝入葡萄籽原花青素(GSPE)后,引起 CYP7A1,HMG-CoA還原酶(合成 CYP7A1的限速酶)、HMG-CoA合成酶同時增加,期間增加的膽固醇全被轉化成膽汁酸,所以GSPE并不會引起肝臟、血液膽固醇含量的變化。在對小鼠飼喂不同劑量的寡糖后,Zong等[51]發現,寡糖能降低血液總膽固醇和LDL含量,增加肝臟腹膜巨噬細胞 (3)H-膽固醇和排泄物中膽汁酸的含量,這些結果證明寡糖的作用是促進CYP7A1基因表達;Hosomi等[52]在對小鼠飼喂魚蛋白胨后發現魚蛋白胨能促進CYP7A1表達,從而能預防動脈硬化。王先科等[53]研究發現苜蓿皂苷通過促進CYP7A1和LDL-R表達發揮其對高脂血癥的預防好治療作用。
人們對CYP7A1基因的研究已歷經40多年,隨著研究的深入,人們對它的結構、表達、調控、功能已經有了初步認識。CYP7A1基因及其轉錄激活/抑制級聯網絡在機體膽汁酸合成、脂類代謝平衡中的作用以及與疾病相關性及機體對藥物敏感性日益受到人們關注。隨著新效應和機制的進一步闡明,該基因完全可以作為藥物治療高血脂醇癥、動脈粥樣硬化、膽結石等疾病的靶位點,應用到病理研究中。隨著農業生物技術的發展和推廣,相信CYP7A1基因可以在家禽、家畜瘦肉率的改造中發揮重要作用。
[1]COOPER A D,CHEN J,BOTELHO-YETKINLER M J,et al.Characterization of hepatic-specific regulatory elements in the promoter region of the human cholesterol 7α-hydroxylase gene[J].J Biol Chem,1997,272(6)∶3444 -3452.
[2]GBAGUIDI G F,AGELLON L B.The inhibition of the human cholesterol 7α-hydroxylase gene(CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor α and peroxisome proliferator-activated receptorαheterodimer [J].Nucl Acid Res,2004,32(3)∶1113 - 1121.
[3]AGELLON L B,CHEEMA S K.The 3′-untranslated region of the mouse cholesterol 7α-hydroxylase mRNA contains elements responsive to post-transcriptional regulation by bile acids [J].Biochem J,1997,328(Pt2)∶393 - 399.
[4]ASAHINA K,FUJIMORI H,SHIMIZU-SAITO K,et al.Expression of the liver-specific gene CYP7A1 reveals hepatic differentiation in embryoid bodies deried from mouse embryonic stem cells[J].Gene Cells,2004,9(12)∶1297-1308.
[5]WANG Jin,OLIN M,ROZELL B,et al.Differential hepatocellular zonation pattern of cholesterol 7α-hydroxylase(CYP7A1) and sterol 12α-hydroxylase (CYP8B1) in the mouse [J].Histochem Cell Biol,2007,127(3)∶253 -261.
[6]FU Z D,CSANAKY I L,KLAASSEN C D.Gender-divergent profile of bile acid homeostasis during aging of mice[J].PLoS One,2012,7(3)∶e32551.
[7]YIN Lei,WANG Jing,KLEIN P S,et al.Nuclear receptor rev-erbalpha is a critical lithium-sensitive component of the circadian clock [J].Science,2006,311∶1002 - 1005.
[8]LE MARTELOT G,CLAUDEL T,GATFIELD D,et al.REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis [J].Plos Biol,2009,7∶e1000181.
[9]PREITHNER N,DAMIOLA F,LOPEZ-MOLINA L,et al.The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator [J].Cell,2002,110∶251 - 260.
[10]NOSHIRO M,USUI E,KAWAMOTO T,et al.Multiple mechanisms regulate circadian expression of the gene for cholesterol 7 α-hydroxylase(CYP7A1),a key enzyme in hepatic bile acid biosynthesis[J].J Bio Rhythms,2007,22∶299 - 311.
[11]NOSHIRO M,NISHIMOTOM,OKUDA K,et al.Rat liver cholesterol 7 α-hydroxylase∶pretranslational regulation for circadian rhythm [J].J Biol Chem,1990,265(17)∶10036 - 10041.
[12]LEE Y K,MOORE D D.Dual mechanisms for repression of the monomeric orphan receptor liver receptor homologous protein-1 by the orphan small heterodimer partner[J].Biol Chem,2002,277∶2463 - 2467.
[13]HUNT M C,YANG Yizeng,EGGERTSEN G,et al.The peroxisome proliferator-activated receptor alpha regulates bile acid biosynthesis [J].J Biol Chem,2000,275(37)∶28947 - 28953.
[14]LEFEBVRE P,CARIOU B,LIEN F,et al.Role of bile acids and bile acid receptors in metabolic regulation [J].Physil Rev,2009,89(1)∶147 - 191.
[15]馬穎,姜玲玲,石如玲,等.同時激活肝X受體和過氧化物酶體增殖劑激活受體α對大鼠膽汁酸合成的影響[J].中國醫學科學院學報,2007,29(3):384 - 387.MA Ying,JIANG Lingling,SHI Ruling,et al.Effects of activation of liver x receptor and peroxisome proliferatoractivited receptor α on bile acid synthesis in rats [J].Acta Acad Med Sin,2007,29(3)∶384 - 387.
[16]PEET D J,TURLEY S D,MA Wenzhen,et al.Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR α [J].Cell,1998,93(5)∶693 - 704.
[17]MIYAKE J H,WANG S L,DAVIS R A.Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7 α-hydroxylase [J].J Biol Chem,2000,275∶21805 - 21808.
[18]KIM D H,LEE J W.Tumor suppressor p53 regulates bile acid homeostasis via small heterodimer partner [J].PNAS,2011,108∶12266 - 12270.
[19]LU T T,MAKISHIMA M,REPA J J,et al.Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors [J].Mol Cell,2000,6(3)∶507 - 515.
[20]DAVIS R A,MIYAKE J H,HUI T Y,et al.Regulation of cholesterol-7α-hydroxylase∶BAREly missing a SHP[J].J Lipid Res,2002,43∶553 - 543.
[21]SHIN D J,OSBOME T F.FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action [J].J Biol Chem,2009,284(17)∶11110 - 11120.
[22]BELL S G.The therapeutic use of honey [J].Neonatal Netw,2007,26∶247 - 251.
[23]SUN Zhichao,YU Xuemei,WU Weibin,et al.Fibroblast growth factor 7 inhibits cholesterol 7α-hydroxylase gene expression in hepatocytes [J].Biochem Biophys Res Commun,2012,423(4)∶775 - 780.
[24]LI Tiangang,MA Huiyan,PARK Y J,et al.Forkhead box transcription factor O1 inhibits cholesterol 7α-hydroxylase in human hepatocytes and in high fat diet-fed mice [J].Biochim Biophys Acta,2009,1791∶991 - 996.
[25]SHIN D J,Plateroti M,Samarut J,et al.Two uniquely arranged thyroid hormone response elements in the far upstream 5′flanking region confer direct thyroid hormone regulation to the murine cholesterol 7α hydroxylase gene[J].Nucheic Acid Res,2006,34∶3853 - 3861.
[26]GULLBERG H,RUDLING M,FORREST D,et al.Thyroid hormone receptor beta-deficient mice show complete loss of the normal cholesterol 7α-hydroxylase (CYP7A) response to thyroid hormone but display enhanced resistance to dietary cholesterol[J].Mol Endocrinol,2000,14∶1739 - 1749.
[27]NAKAYAMA K,PUCHKAIV A,PIKULEVA I A,et al.Membrane binding and substrate access merge in cytochrome P4507A1,a key enzyme in degradation of cholesterol[J].J Biol Chem,2001,276(33)∶31459 -31465.
[28]PIKULEVA I A.Cytochrome P450s and cholesterol homeostasis [J].Pharmacol Ther,2006,112(3):761 - 73.
[29]RUSSELL D W,SETCHELL K D.Bile acid biosynthesis [J].Biochemistry,1992,31(20)∶4737 - 4749.
[30]NORLIN M,WIKVALL K.Enzymes in the conversion of cholesterol into bile acids [J].Curr Mol Med,2007,7(2)∶199 - 218.
[31]CHEN Yujuan,ZHANG Sizhong,XIAO Cuiying,et al.The A-204C polymorphism in CYP7A1 gene affects its promoter activity [J].Chin J Biochem Mol Biol,2006,22(6)∶450 - 453.
[32]SRIVASTAVA A,CHOUDHURI G,MITTAL B.CYP7A1(-204 A>C;rs3808607 and -469 T>C;rs3824260)promoter polymorphisms and risk of gallbladder cancer in North Indian population[J].Metabolism Clin Exp,2010,59(6)∶767 - 773.
[33]周斌,張思仲,肖翠英,等.膽固醇7α羥化酶基因A-204C單核苷酸多態性及其與血漿血脂的關聯[J].遺傳,2004,26(3):283 - 286.ZHOU Bin,ZHANG Sizhong,XIAO Cuiying,et al.Association of 7α-hydroxylase gene polymorphism with levels of plasma lipids [J].Hereditas,2004,26(3)∶283 - 286.
[34]王程強,王春紅,張妍.膽固醇7α羥化酶基因多態性與小兒血脂的關系[J].海南醫學院學報,2008,14(1):6-11.WANG Chengqiang,WANG Chunhong,ZHANG Yan.Relationships between polymorphism of CYP7A1 gene and serum lipid levels in children [J].J Hainan Med Coll,2008,14(1)∶6 - 11.
[35]KIM H J,PARK H Y,KIN E,et al.Common CYP7A1 promoter polymorphism associated with risk of neuromyelitis optica [J].Neurobiol Dis,2010,37(2)∶349 - 355.
[36]HOFMAN M K,GROENENDIJK M,VERKUIJLEN P J,et al.Modulating effect of the A-278C promoter polymorphism in the cholesterol 7α-hydroxylase gene on serum lipid levels in normolipidaemic and hypertriglyceridaemic individuals [J].Eur J Hun Genet,2004,12∶935 - 941.
[37]JUZYSZYN Z,KURZAWSKI M,LENER A,et al.Cholesterol 7α hydrolase (CYP7A1) c.-278A>C promoter polymorphism in gallstone disease patients [J].Genet Test,2008,12∶97 - 100.
[38]SHEN Jian,ARNETT D K,PARMELL L D,et al.The effect of CYP7A1 polymorphisms on lipid responses to fenofibrate [J].J Cardiovasc Pharmacol,2012,59(3)∶254 - 259.
[39]LU Yingchang,FESKENS E J,BOER J M,et al.The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population [J].Atherosclerosis,2010,210(10)∶14-27.
[40]WERTHEIM B C,SMITH J W,FANG Changming,et al.Risk modification of colorectal adenoma by CYP7A1 polymorphisms and the role of bile acid metabolism in carcinogenesis[J].Cancer Prev Res Phila,2011,5(2)∶197-204.
[41]楊英昕,朱培庭,張靜喆,等.膽寧片對高脂模型大鼠脂肪肝及PPARα,CYP7A1表達的影響[J].中國新藥與臨床雜志,2007,26(10):721-726.YANG Yingxin,ZHU Peiting,ZHANG Jingzhe,et al.Effect of danning tablets on expression of PPAR and CYP7A1 in rats with noralcoholie fatty liver disease[J].Chin J New Drugs Clin Rem,2007,26(10):721-726.
[42]梁曉強,顧宏剛,章學林,等.養肝利膽顆粒對膽固醇結石小鼠肝臟中PPARγ及CYP7A1表達的影響[J].遼寧中醫雜志,2011,38(1):172-174.LIANG Xiaoqiang,GU Honggang,ZHANG Xuelin,et al.Effects of YangGanLiDan granule on PPARγ and CYP7A1 of liver in mice with cholesterol gallstone [J].Liaoning J Trad Chin Med,2011,38(1)∶172 - 174.
[43]LI Tiangang,OWSLEY E,MATOZEL M,et al.Transgenic expression of cholesterol 7α-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice [J].Hepatology,2010,52(2)∶678 - 690.
[44]FEINGOLD K R,SPADY D K,POLLOCK A S,et al.Endotoxin,TNF,and IL-1 decrease cholesterol 7 α-hydroxylase mRNA levels and activity [J].J Lipid Res,1996,37(2)∶223 - 228.
[45]CAO Yang,BEI Weijian,HU Yinming,et al.Hypocholesterolemia of rhizoma coptidis alkaloids is related to the bile acid by up-regulated CYP7A1 in hyperlipidemic rats [J].Phtyomedicine,2012,19(8/9)∶686 - 692.
[46]LI Tiangang,FRANCL J M,BOEHME S,et al.Glucose and insulin induction of bile acid synthesis∶mechanisms and implication in diabetes and obesity [J].J Biol Chem,2012,287(3)∶1861 - 1873.
[47]BAO Lidao,BAI Shimin,BORIJIHAN G.Hypolipidemic effects of a new piperine derivative GB-N from Piper longum in high-fat diet-fed rats [J].Pharm Biol,2012,50(8)∶962 - 967.
[48]CHEN Wen,GUO Junxia,CHANG Ping.The effect of taurine on cholesterol metabolism[J].Mol Nutr Food Res,2012,56(5)∶681 - 690.
[49]WANG Dongliang,XIA Min,GAO Song,et al.Cyanidin-3-O-β-glucoside upregulates hepatic cholesterol 7α-hydroxylase expression and reduces hypercholesterolemia in mice [J].Mol Nutr Food Res,2012,56(4)∶610 - 621.
[50]DEL BAS J M,FERNáNDEZ-LARREA J,BLAY M,et al.Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats [J].FASEB J,2005,19(3)∶479 - 481.
[51]ZONG Chuanlong,YU Yang,SONG Guohua,et al.Chitosan oligosaccharides promote reverse cholesterol transport and expression of scavenger receptor BI and CYP7A1 in mice [J].Exp Biol Med,2012,237(2)∶194 - 200.
[52]HOSOMI R,FUKUNAGA K,ARAI H,et al.Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets [J].J Med Food,2012,15(3)∶299 - 306.
[53]張先科,史瑩華,王成章,等.苜蓿皂苷對高脂血癥大鼠膽固醇代謝及其相關基因表達的影響[J].動物營養學報,2012,24(5):983 - 990.EHANG Xianke,SHI Yinghua,WANG Chengzhang,et al.Effect of alfalfa saponins on cholesterol metabolism and its related gene expression in hyperlipidemic rats [J].Chin J Animal Nutr,2012,24(5)∶983 - 990.