WANG Chong
DepartmentofM athematics,theGeorgeWashington University,
Washington DC 20052,USA.
Existenceof Non trivialWeak Solu tions to Quasi-Linear Ellip tic Equationsw ith Exponen tial G row th
WANG Chong?
DepartmentofM athematics,theGeorgeWashington University,
Washington DC 20052,USA.
Received 13 June 2012;A ccep ted 1 Decem ber 2012
.In this paper,w e study the existence of nontrivial w eak solu tions to the follow ing qu asi-linear ellip tic equations


AMSSubjectClassifications:35J20,35J60
ChineseLibraryClassifications:O175
Trud inger-M oser inequality;exponentialgrow th.
Consider non linear ellip tic equationsof the form

w here?isa sm ooth bounded dom ain in Rn,and-△pu=-d iv(|?u|p-2?u).Br′ezis[1], Br′ezis-N irenberg[2]and Bartsh-W illem[3]stud ied this p roblem under the assum p tions that p=2 and|f(x,u)|≤c(|u|+|u|q-1).Garcia-A lonso[4]stud ied this p roblem under the assum p tions that p≤n and p2≤n.W hen?=Rnand p=2,Kryszew ski-Szu lkin[5], A lam a-Li[6],Ding-N i[7]and Jean jean[8]stud ied the follow ing equations in stead of (1.1):

In thispaperw e consider quasi-linear ellip tic equations in thew hole Euclidean space


D.Cao[9]and Cao-Zhang[10]stud ied p roblem(1.2)in the case n=2 andβ=0. Panda[11],do′O etal.[12,13]and A levs-Figueiredo[14]stud ied p roblem(1.2)in general d im ension andβ=0.Whenβ6=0,(1.2)w as stud ied by Ad im urthi-Yang[15],do′O et al.[16],Yang[17],Zhao[18],and others.Sim ilar p roblem s in R4or com p letenoncom pact Riem annianm anifoldsw ere also stud ied by Yang[19,20].
We define a function space

w ith the norm

We say that u∈E is aw eak solu tion of p roblem(1.2)if for all?∈E w e have

Ifaw eak solution u satisfies u(x)≥0 for alm ostevery x∈Rn,w e say u is positive.
Throughou t thispaperw eassum e the follow ing tw o cond itionson the poten tial V(x):
(V1)V(x)≥V0>0;

We also assum e that the non linearity f(x,s)satisfies the follow ing:
(H1)There exist constan tsα0,b1,b2>0 such that for all(x,s)∈Rn×R+,

(H2)There existsμ>n,such that for all x∈Rnand s>0,

(H3)There exist constan ts R0,M0>0,such that for all x∈Rnand s>R0,
F(x,s)≤M0f(x,s);
(H4)

uniform ly w ith respect to x∈Rn,w here

(H5)There exist constan ts p>n and Cpsuch that

for all s≥0 and all x∈Rn,w here




Ou rm ain resu lt is the follow ing theorem:
Theorem1.1.Assume that V(x)isacontinuousfunction satisfying(V1)and(V2).f:Rn×R→R isa continuous function and the hypotheses(H1)-(H6)hold.Then Eq.(1.2)has a nontrivial positiveweak solution.
Here the assum p tion(H5)is d ifferent from that of[17].(H5)w as also used in[16] and[18].An exam p le of f satisfying(H1)-(H6)reads

w here l≥N is an integer,Cpis as in(H5),χ:[0,∞)→R is a sm ooth function such that 0≤χ≤1,χ≡0 on[0,A],χ≡1 on[2A,∞),and|χ′|≤2/A,w here A is a large constan t,say A>4n-1.For detailsw e refer the reader to in[20,Proposition 2.9].Other exam p lesw ere also given in[16]and[18]respectively.
We w ill give som e p relim inary resu lts before p roving Theorem 1.1.Define a function ζ:N×R→R by

Let s≥0,p≥1 be realnum bers and n≥2 be an integer,then thereholds(see[17])

Problem(1.2)is closely related to a singu lar Trud inger-M oser type inequality[15]. That is,for allα>0,0≤β<n,and u∈W1,n(Rn)(n≥2),there holds



In thispaper,w e also need the follow ing resu ltw hich is taken from Lemm a 2.4 in[17]. That is,if V:Rn→R is continuous and(V1),(V2)are satisfied,then for any q≥1,there holds

Define a functional J:E→R by



w hereζ(n,s)is defined by(2.1).Thus J isw ell defined thanks to(2.3).
Lemma2.1.Assume V(x)≥V0in Rn,(H1),(H2)and(H3)hold.Then for any nonnegative, compactly supported function u∈W1,n(Rn){0},thereholds J(tu)→-∞as t→+∞.
Proof.We follow the line of[15].(H2)and(H3)im p ly that there exists R0>0 such that for all s>R0,

therefore,

It follow s that


Sinceμ>n,this im p lies J(tu)→-∞as t→+∞.
Lemma2.2.Assume that V(x)≥V0in Rn,(H1)and(H4)are satisfied.Then there exist δ>0 and r>0 such that J(u)≥δforall‖u‖=r.
Proof.Accord ing to(H4),there existτ,δ>0 such that if|s|≤δ,

Therefore for all x∈Rn,|s|≤δ,w e have

On the other hand,accord ing to(H1),w e can obtain that for any|s|≥δ,

w here

Com bining(2.6)and(2.7),w e have for all(x,s)∈Rn×Rn,

w here C=Cδ.Herew e also use the inequality

w hich is taken from Lemm a 4.2 in[15].Accord ing to the definition ofλβ,w e get

Thanks to(2.8),(2.9),and(2.10),w e obtain

For su fficien tly sm all r>0,w e have

w hich is due toτ>0.Therefore,accord ing to(2.11)and(2.12),for all‖u‖=r,

Lemma2.3.Criticalpoints of Jareweak solutionsof(1.2).
Proof.Though the p roof is standard,w e w rite it for com p leteness.Define a function g(t)=J(u+t?),nam ely

By a sim p le calcu lation,

Let f1(t)=|?(u+t?)|n,f2(t)=|u+t?|n,and

Clearly w e have

Com bining the above,w e have for all?∈E,

Therefore,J′(u)·?=0 is equivalent to

Hencew e get the desired resu lt.
Lemma2.4.Assume(H5)issatisfied,then thereexistsafunction up∈Ewhich satisfies‖up‖= Sp,and for t∈[0,+∞),wedefine

Thereholds

Proof.Sim ilar to[18],assum e{uk}isabounded positivesequenceof functions in E w hich satisfies

Mean while we assum e that uk?upin E,uk→upin Lq(Rn)for all q≥1,uk(x)→up(x) alm ost everyw here.Using the Ho¨lder inequality and the M ean Value Theorem,w e can easily p rove that for any >k>K,

Therefore,

Nextw ew ill p rove

Since uk?upw eak ly in E,w e know?uk??upw eak ly in Ln(Rn).Accord ing to the definition ofw eak convergence and the H¨older inequality,w e get

Sim ilarly to the p roof of(2.15),w e know

Thanks to(2.17)and(2.18),(2.16)holds.M eanw hile,by the definition of Sp,w e know Sp≤‖up‖.Therefore,w e know‖up‖=Sp.Accord ing to(H5),w e have

Due to the definition of J(tup)and(2.19),w e have

Let

and by calcu lation w e know for any realnum ber t,

Thism eans

Ifw e set

then w e have

In view of(H5),w e get(2.14)imm ed iately.
Lemma2.5.Assume that(V1),(V2),(H1),(H2)and(H3)hold and{uk}?E bean arbitrary Palais-Smale sequenceof J,i.e.,

in E?as k→∞,where E?denotes the dual space ofE.Then there exists a subsequence of{uk} (still denoted by{uk})and u∈E such that uk?u weakly in E,uk→u strongly in Lq(Rn)for allq≥1,and

Furthermore,u isaweak solution of(1.2).
Proof.Assum e{uk}is a Palais-Sm ale sequence of J.Since J(uk)→c,w e obtain

Accord ing to(2.13),w e know

for all?∈E,w hereτk=‖J′(uk)‖,andτk→0 as k→∞.Taking?=ukin(2.21),w e have

By(H2),w e obtain


A ccord ing to(2.24),it’s easy to p rove that‖uk‖is bounded.Due to(2.20)and(2.22),w e get

w here C is a constantw hich dependson ly onμand n.A ccord ing to(2.5)w e obtain that for som e u∈E and any q≥1,up to a subsequence,uk→u strongly in Lq(Rn).Then w e know uk→u alm osteveryw here in Rn.Nextw ew ill p rove thatup to a subsequence

Due to f(x,·)≥0,it is su fficien t for us to p rove thatup to a subsequence

Due to

w e know

For anyδ>0,there exists M>Csuch that

w here C is the constant in(2.25).Accord ing to(2.25),w e know

For all x∈{x∈Rn:|uk|<M},by ou r assum p tion(H1),w e can deduce that


Since

accord ing to the generalized Lebesgue’sdom inated convergence theorem,w e know

Accord ing to(2.28),(2.29)and(2.31),w e can p rove that(2.27)holds.Therefore w e get (2.26).By(H3)and(H1),w e obtain that




Next w e w ill p rove Theorem 1.1.By Lemm as 2.1 and 2.2,w e know J satisfies all the hypothesesof the M oun tain-pass Theorem w ithou t the Palais-Sm ale cond ition:

Accord ing to the M ountain-pass Theorem excep t for the Palais-Sm ale Cond ition[21], there existsa sequence{uk}?E such that

in E?,w here

A ccord ing to Lemm a 2.5,w e know thatup to a subsequence

Nextw ew ill p rove that the solution u w hich w e get in the above is nontrivial.Suppose u≡0.Due to F(x,u)≡0 for all x∈Rn,w e get

A ccord ing to(2.20),w e have

Com bining(3.1)and(3.2),w e can obtain that

By Lemm a 2.4,w e get

Accord ing to(3.3)and(3.4),w e know there exists som eη0>0 and K>0,such that

for all k>K.A ccord ing to(3.5),w e can choose q>1 su fficien tly close to 1 such that

for all k>K.By(H1)and(2.1),w e have

It follow s that

Letting 1/q′+1/q=1,and accord ing to(3.6),(3.7),the H¨older Inequality,(2.2),and(2.4), w e have

Accord ing to(2.22)and(3.8),w e have

This is in con trad iction w ith(3.3).Thus the solu tion u of(1.2)is nontrivial.
Testing Eq.(1.2)w ith u-,the negative part of u,w e conclude that u-≡0.Hence u≥0.
The au thor is supported by the China Scholarship Council.
[1]Br′eis H.,Ellip tic equations w ith lim iting Sobolev exponents.Comm.Pure Appl.M ath.,39 (1986),517-539.
[2]Br′eis H.,N irenberg L.,Positive solutions of nonlinear ellip tic equations involving critical Sobolev exponents.Comm.PureAppl.M ath.,36(1983),437-477.
[3]Bartsh T.,W illem M.,On an ellip tic equation w ith concave and convex nonlinearities.Proc. Amer.M ath.Soc.,123(1995),3555-3561.
[4]Garcia A.,A lonso P.,Existence and non-uniqueness for the p-Lap lacian.Commun.Partial D ifferential Equations,12(1987),1389-1430.
[5]Kryszew skiW.,Szu lkin A.,Generalized linking theorem w ith an app lication to sem ilinear Schr¨od inger equation.Adv.D iff.Equ.,3(1998),441-472.
[6]A lam a S.,LiY.,Existence of solu tions for sem ilinear ellip tic equationsw ith indefinite linear part.J.Diff.Equ.,96(1992),89-115.
[7]DingW.,N iW.,On theexistenceof positiveentire solutionsofa sem ilinear ellip ticequation. Arch.Rat.M ath.Anal.,31(1986),283-308.
[8]Jeanjean L.,Solutions in spectralgaps for a nonlinear equation of Schr¨od inger type.J.Diff. Equ.,112(1994),53-80.
[9]Cao D.,Nontrivial solution of sem ilinear ellip tic equations w ith critical exponent in R2. Commun.PartialD ifferential Equations,17(1992),407-435.
[10]Cao D.,Zhang Z.,Eigen functions of the non linear ellip tic equation w ith criticalexponent in R2.ActaM ath.Sci.,(English Ed.)13(1993),74-88.
[11]Panda R.,Nontrivial solu tion of a quasilinear ellip tic equation w ith critical grow th in Rn. Proc.Indian Acad.Sci.(M ath.Sci.),105(1995),425-444.
[12]do′O J.M.,n-Lap lacian equations in Rnw ith critical grow th.Abstr.Appl.Anal.,2(1997), 301-315.
[13]do′O J.M.,M edeiros E.and U.Severo,On a quasilinear nonhom ogeneous ellip tic equation w ith criticalgrow th in Rn.J.Diff.Equ.,246(2009),1363-1386.
[14]A lves C.O.,Figueiredo G.M.,Onm u ltip licity and concentration of positive solutions for a classofquasilinear p roblem sw ith criticalexponentialgrow th in Rn.J.Diff.Equ.,246(2009), 1288-1311.
[15]Ad im u rthi,Yang Y.,An interpolation of Hardy inequality and Trud inger-M oser inequaltiy in Rnand its app licaitons.InternationalM athematicsResearch Notices,13(2010),2394-2426.
[16]do′O J.M.,Souza M.de,On a class of singu lar Trud inger-M oser type inequalities and its app lications.M ath.Narchr.,284(2011),1754-1776.
[17]Yang Y.,Existence of positive solu tions to quasi-linear ellip tic equations w ith exponential grow th in thew hole Euclidean space.JournalofFunctional Analysis,262(2012),1679-1704.
[18]Zhao L.,A m u ltip licity resu lt for a singu lar and nonhom ogeneous ellip tic p roblem in Rn. JournalofPartialD iff.Equ.,25(2012),90-102.
[19]Yang Y.,Adam s type inequalities and related ellip tic partiald ifferentialequations in d im ension four.J.Diff.Equ.,252(2012),2266-2295.
[20]Yang Y.,Trud inger-M oser inequalities on com p lete noncom pact Riem annian m anifolds. JournalofFunctional Analysis,263(2012),1894-1938.
[21]Rabinow itz P.H.,On a class of nonlinear Schr¨odinger equations.Z.Angew.M ath.Phys.,43(1992),270-291.
10.4208/jpde.v26.n1.3 M arch 2013
?Correspond ing au thor.Emailaddress:chongwang@gwu.edu(C.Wang)
Journal of Partial Differential Equations2013年1期