999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

藏波羅花的化學成分研究

2013-02-14 04:20:13高燕萍沈云亨高燕霞張衛(wèi)東
關(guān)鍵詞:中藥

高燕萍,沈云亨,高燕霞,李 博,張衛(wèi)東*

1中國藥科大學 中藥學院,南京210009;2 第二軍醫(yī)大學藥學院 天然藥物化學教研室,上海200433

Introduction

Incarvillea younghusbandii,belonging to the genus Incarvillea (Bignoniaceae),is a perennial herb native to the Qinghai and Tibet provinces of China[1].As a Chinese folk medicine,this plant has been long used for the treatment of dizziness,anemia,and to stimulate lactation[2,3].To date,phytochemical investigations on I.younghusbandii have just revealed the isolation of coumarins[4],volatile oil[5],phenolic glycosides[6],and a dimeric cyclohexylethanoid[7].In order to search for more interesting compounds with bioactivities,we investigated the chemical components of the titled plant.Ten compounds were obtained,all of which were isolated from I.younghusbandii for the first time.

Experimental

Apparatus and reagents

Melting points were determined on a RY-1 micro-melting point apparatus without correction. The ESI-MS were acquired on Agilent 1100 series mass spectrometer.NMR spectra were measured on a Bruker DRX-600 spectrometer with TMS as internal standard,operating at 600 MHz for1H and 150 MHz for13C NMR.Chemical shift (δ)was given in ppm and coupling constants in Hz. Column chromatographies (CC)were carried out on silica gel (200-300 mesh,Yantai,China)and sephadex LH-20 (GE Healthcare Bio-Sciences AB,Sweden),and precoated silica GF254plates were used for TLC (Qingdao Haiyang Chemical Co.,Ltd.,China).

Plant material

The whole plants of I. younghusbandiii were collected in Zhongdian county,Yunnan province,P. R. China,in August 2010,and authenticated by Prof. Han-Ming Zhang of Second Military Medical University.A voucher specimen (No. 20100815)was deposited in the School of Pharmacy,Second Military Medical University.

Extraction and isolation

The air-dried whole plant (1.3 kg)were powered and extracted with 80% EtOH for four times and then partitioned with petroleum ether,EtOAc,and n-BuOH successively.The EtOAc-soluable extract was subjected to a silica gel column eluting with a gradient petroleum ether/Me2CO (30∶0→0∶1)to obtain frs.1-5.Fr.2 (1 g)were chromatographied on silica gel (200-300 mesh)eluting with a gradient of petroleum ether/Me2CO (10∶1),and then purified by repeated column chromatography over Sephadex LH-20 (MeOH),yielding compounds 3 (7. 5 mg),5 (9. 0 mg),7 (20. 0 mg),9 (12.0 mg),and 10 (12.5mg).Fr.3 (1.5 g)was applied to silica gel column chromatography and purified by PTLC (CHCl3:MeOH 15 ∶1),to afford compounds 1 (8.0 mg),2 (9.6 mg),and 8 (27.0 mg).Fr.4 (0.5 g),undertook to Sephadex LH-20 and combined with PTLC (CHCl3:MeOH 10 ∶1),gave compounds 4 (15.0 mg)and 6 (17.5 mg).

Structural elucidation

Compound 1 C8H16O3;Colorless oil;ESI-MS:m/z 183[M+Na]+,159 [M-H]-;1H NMR (CDCl3,600 MHz)δ:1.40-1.42 (2H,m,Hax-2 and Hax-6),1.63-1.72 (2H,overlapped,m,Heq-2 and Heq-6),1.63-1.72 (4H,overlapped,m,Hax-3 and Heq-3,Hax-5 and Heq-5 ),3.52 (1H,m,H-4),1.69 (2H,t,J =7.2 Hz,H-1'),3.73 (2H,t,J = 6.6 Hz,H-2');13C NMR (CDCl3,150 MHz)δ:70.8 (C-1),36.1 (C-2),31.3 (C-3),70.8 (C-4),31.3 (C-5),36.1 (C-6),45.5 (C-1'),59.2 (C-2'). The NMR data was identical with those reported in the literature[8],and elucidated as regyol.

Compound 2 C8H14O3;Colorless oil;ESI-MS:m/z 181[M+Na]+,157 [M-H]-;1H NMR (CDCl3,600 MHz)δ:1.75 (2H,dt,J = 13.2,4.8 Hz,Hax-2,Hax-6),2.10 (2H,m,Heq-2,Heq-6),2.73 (2H,dt,J = 13.8,6.0 Hz,Hax-3,Hax-5),2.22 (2H,m,Heq-3,Heq-5),1.80 (2H,t,J = 6.0 Hz,H-7),3.95(2H,t,J = 6.0 Hz,H-8);13C NMR (CDCl3,150 MHz)δ:70.5 (C-1),36.7 (C-2),37.0 (C-3),212.9 (C-4),37.0 (C-5),36.7 (C-6),41.5 (C-7),59.5 (C-8). The NMR data were in accordance with those reported in the literature[9]. Therefore,compound 2 was characterized as cleroindicin B.

Compound 3 C11H21N;White powder;ESI m/z 168[M + H]+;1H NMR (CDCl3,600 MHz)δ:0.91(3H,d,J = 6.6 Hz,CH3-4),1.01 (3H,d,J = 6.6 Hz,CH3-8),1.18 (1H,m,H-4),1.50 (1H,m,H-5),1.62 (2H,m,Ha-6,Ha-7),1.81 (1H,m,H-9),1.98 (2H,m,Hb-6,Hb-7),2.33 (1H,m,Hax-1),2.44 (1H,brs,Hax-3),2.76 (3H,s,N-Me),2.91(1H,dd,J = 12.6,4.2 Hz,H-8),3.23 (1H,d,J =10.8 Hz,Heq-3),3.34 (1H,d,J = 10.8 Hz,Heq-1);13C NMR (CDCl3,150 MHz)δ:53.3 (C-1),59.8(C-3),30.5 (C-4),45.6 (C-5),27.2 (C-6),31.8(C-7),34.0 (C-8),42.9 (C-9),16.9 (4-CH3),18.9 (8-CH3),44.7 (N-CH3). The NMR data were in agreement with those reported in the literature[10],and determined as β-skytanthine.

Compound 4 C21H32O12;White amorphous powder;ESI-MS:m/z 499[M + Na]+,475 [M-H]-;1H NMR(CD3OD,600 MHz)δ:6.81 (lH,d,J = 8.2 Hz,H-5),6.73 (1H,d,J = 2.0 Hz,H-2),6.67 (1H,dd,J=8.2,2.0 Hz,H-6),5.15 (lH,d,J = 16 Hz,H-1''),4.29 (lH,d,J = 7.8 Hz,H-1'),3.81 (3H,s,Ar-OCH3),2.81 (2H,t,J = 7.27 Hz,H-β),1.25(3H,d,J = 6.2 Hz,H-6''),4.08-3.24 (10H of ducose and rhamnose,m,H-α);13C NMR (CDCl3,150 MHz)δ:132.8 (C-1),112.8 (C-2),147.4 (C-3),147.2 (C-4),117.0 (C-5),121.1 (C-6),71.9 (Cα),36.5 (C-β),104.1 (C-1'),75.5 (C-2'),84.4(C-3'),71.1 (C-4'),77.7 (C-5'),62.6 (C-6'),102.6 (C-1''),72.2 (C-2''),72.1 (C-3''),73.9(C-4''),70.0 (C-5''),17.9 (C-6''),56.5 (3-OCH3). Compound 4 was determined as deacyl isomartynoside by comparison with the spectra data reported in the literature[11].

Compound 5 C8H10O2;Colorless oil;ESI-MS:m/z 161[M+Na]+,137 [M-H]-;1H NMR (CDCl3,600 MHz)δ:7.08 (2H,d,J = 8.4 Hz,H-2,H-6),6.76(2H,d,J = 7.8 Hz,H-3,H-5),3.81 (2H,t,J =6.6 Hz,H-α),2.76 (2H,t,J = 6.6 Hz,H-β);13C NMR (CDCl3,150 MHz)δ:154.2 (C-1),130.5 (C-4),130.2 (C-3,C-5),115.4 (C-2,C-6),63.8 (Cα),38.2 (C-β). The above data were identical with those reported in the literature[12]. Consequently,compound 5 was identified as tyrosol.

Compound 6 Amorphous solid,C14H24O8;ESI-MS:m/z 343[M + Na]+;1H NMR (600 MHz,CD3OD)δ:aglycone 4.15 (1 H,dt,J = 11.0,8.0 Hz,H-2"a),3.86 (1H,dt,J = 11.0,8.0 Hz,H-2b "),2.68(2H,ddd,J = 16.0,10.5,5.0 Hz,H-2ax,H-6ax),2.31 (2H,dt,J = 16.0,10.5 Hz,H-2eq,H-6eq),2.03 (2H,ddd,J = 16.0,10.5,5.0 Hz,H-3ax,H-5ax),1.97 (2H,t,J = 8.0 Hz,H-l"),1.94 (2H,dt,J = 16.0,10.5 Hz,H-3eq,H-5eq);glucose 4.49(1H,d,J = 8.0 Hz,H-1'),3.92 (1H,dd,J =12.2,2.4 Hz,H-6'a),3.71(1H,dd,J = 12.2,6.4 Hz,H-6'b),3.49 (1H,t,J = 9.2 Hz,H-3'),3.47(1H,ddd,J = 9.2,6.4,2.4 Hz,H-5'),3.38 (1H,t,J = 9.2 Hz,H-4'),3.25 (1H,dd,J = 9.2,8.0 Hz,H-2');13C NMR (D2O,150 MHz)δ:219.5 (Cl),103.0 (C-l'),76.7 (C-3'),76.5 (C-5'),73.8(C-2'),70.5 (C-4),70.4 (C-4'),67.1 (C-2"),61.5(C-6'),40.6 (C-l"),37.1" (C-2,C-6),36.5(C-3,C-5). By comparison the spectra data with those related in the literature[13],compound 6 was elucidated as rengioside B.

Compound 7 C29H50O;White needles;mp.139-140° C;ESI-MS m/z 437.4 [M + Na]+;13C NMR(CDCl3,150 MHz)δ:37.3 (C-1),31.7 (C-2),71.8(C-3),42.3 (C-4),140.8 (C-5),121.7 (C-6),31.7 (C-7),31.9 (C-8),50.2 (C-9),36.5 (C-10),21.1 (C-11),39.8 (C-12),42.3 (C-13),56.8(C-14),24.3 (C-15),28.2 (C-16),56.1 (C-17),11.9 (C-18),19.1 (C-19),36.1 (C-20),18.8 (C-21),34.0 (C-22),26.1 (C-23),45.9 (C-24),29.2(C-25),19.8 (C-26),19.4 (C-27),23.1 (C-28),12.0 (C-29). The above data were in accordance with those reported in the literature[14]. Consequently,compound 7 was identified as β-sitosterol.

Compound 8 C8H10O3;Colorless oil;ESI-MS:m/z 155[M + H]+,177 [M + Na]+,153 [M-H]-;1H NMR (CDCl3,600 MHz)δ:4.07 (1H,m,H-2a),3.93 (1H,m,H-2b),2.33 (1H,m,H-3a),2.20(1H,m,H-3b),6.77 (1H,d,J = 10.2 Hz,H-5),6.00 (1H,d,J = 10.2 Hz,H-6),2.78 (1H,dd,J =16.8,4.8 Hz,Hax-8),2.60 (1H,dd,J = 16.5,5.4 Hz,Heq-8),4.23 (1H,m,H-9);13C NMR (CDCl3,150 MHz)δ:66.2 (C-2),39.5 (C-3),75.4 (C-4),148.3 (C-5),128.5 (C-6),197.1 (C-7),40.1 (C-8),81.4 (C-9). The NMR data were in accordance with those reported in the literature[15],and determined as cleroindicin F.

Compound 9 C11H22NO;Colorless needles which showed a positive reaction to the Dragendorff reagent;mp.103-104 °C;ESI-MS:m/z 184 [M + H]+;1H NMR (CDCl3,600 MHz)δ:2.68 (1H,ddd,J =2.0,6.0,12.0 Hz,H-1a),1.56 (1H,t,J = 12.0 Hz,H-1b),2.51 (1H,ddd,J =2.0,5.0,11.5 Hz,H-3a),1.67 (1H,t,J = 12.0 Hz,H-3b),2.08 (1H,m,H-4),2.41 (1H,ddd,J = 2.0,6.0,12.0 Hz,H-5),1.80 (1H,m,H-6a),1.50 (1H,br q,J = 5.0,7.0,13.0 Hz H-6b),4.31 (1H,td,J =2.0,6.5 Hz,H-7),1.82 (1H,m,H-8),1.93 (1H,pent,J = 6.0,6.0,12.0 Hz,H-9),2.27 (3H,s,N-Me),0.86 (3H,d,J = 6.6 Hz,Me-4),1.02 (3H,d,J = 6.6 Hz,Me-8);13C NMR (CDCl3,150 MHz)δ:73.4 (C-7),58.0 (C-1,C-3),46.2 (N-Me),45.8 (C-9),42.3(C-8),37.5 (C-5),32.7 (C-6),30.5 (C-4),17.4(Me-8),14.2 (Me-4). Comparing NMR data with those reported in the literature[16],compound 9 was determined as incarvilline.

Compound 10 C8H8O4;White powder;ESI-MS:m/z 167[M-H]-;1H NMR (CD3OD,600 MHz)δ:7.55(2H,s,H-2 and H-6),6.82 (1H,d,J = 7.8 Hz,H-5),3.88 (3H,s,3-OCH3);13C NMR (CD3OD,150 MHz)δ:123.0 (C-1),113.9 (C-2),152.5 (C-3),148.6 (C-4),115.8 (C-5),125.2 (C-6),170.0 (C-7),56.4 (3-OCH3). The above data were in agreement with those dealt with in the literature[17],and identified as 3-O-methyl-4-hydroxy benzoic acid.

1 Editor committee. Flora of China. Beijing:Science Press,1990,69:46.

2 Ni ZC. Economic Plants of Tibet. Beijing:Beijing Science and Technology Press,1990.606.

3 Editor committee. Chinese Herb Medicine. Shanghai:Shanghai Science and Technology Publisher 1999,7:428.

4 Fu Y,Bai Y,Dawa ZM,et al.Chemical constituents of Incarvillea younghusbandii. Chin J Chin Mater Med,2010,35:58-62.

5 Fu Y,Li PJ,Bai Y,et al. Chemical analysis of essential oil from Incarvillea younghusbandii by GC-MS. J Instrum Anal,2008,27:70-71.

6 Pan WG,Jiang SP,Luo P,et al. Isolation,purification and structure identification of two phenolic glycosides from the roots of Incarvillea younghusbandii Sprague and their antioxidant activities.Acta Pharm Sin,2011,46:422-427.

7 Gao YP,Shen YH,Zhang SD,et al.Incarvilleatone,a new cyclohexylethanoid dimer from Incarvillea younghusbandii and its inhibition against Nitric Oxide (NO)release. Org Lett,2012,14:1954-1957.

8 Kobler C Effenberger F. Chemo enzymatic synthesis of Rengyol and Isorengyol.Tetrahedron,2006,62:4823-4828.

9 Tian J,Zhao QS,Zhang HJ,et al. New Cleroindicins from Clerodendrum indicum.J Nat Prod,1997,60:766-769.

10 Lins AP,F(xiàn)elicio JD. Monoterpene alkaloids from Tecoma stans.Phytochemistry,1993,34:876-878.

11 Calis I,Lahloub M,Rogenmoser M,et al. Isomartynoside,a phenylpropanoid glycoside from Galeopsis pubescens. Phytochemistry,1984,23:2313-2315.

12 Takaya Y,F(xiàn)urukawa T,Miura S,et al. Antioxident constituents in distillation residue of Awamori Spirits. J Agric Food Chem,2007,55:75-79.

13 Guiso M,Marra C,Piccioni F,et al. Iridoid and phenylpropanoid glucosides from Tecoma Capensis. Phytochemistry,1997,45:193-194.

14 Luo XR,Li B,Nian JX,et al. Studies on chemical constituents of Alternanthera philoxeroides.Chin Pharm J,2007,42:1138-1140.

15 Tian J,Zhao QS,Zhang HJ,et al.Five new compounds from Clerodendrum Indicum.Chin Chem Lett,1997,8:129-132.

16 Chi YM,Yan WM,Chen DC,et al. A monoterpene alkaloid from incarvillea sinensis. Phytochemistry,1992,31:2930-2932.

17 Scott KN. Carbon-13 nuclear magnetic resonance of biologically important aromatic acid I. Chemical shift of benzoic acid and derivatives.J Am Chem Soc,1972,94:8564-8568.

猜你喜歡
中藥
中藥提取物或可用于治療肥胖
中老年保健(2021年5期)2021-12-02 15:48:21
中藥久煎不能代替二次煎煮
中老年保健(2021年4期)2021-12-01 11:19:40
您知道嗎,沉香也是一味中藥
中老年保健(2021年4期)2021-08-22 07:08:32
《中國現(xiàn)代中藥》簡介
中醫(yī),不僅僅有中藥
金橋(2020年7期)2020-08-13 03:07:00
中藥的“人事檔案”
《中國現(xiàn)代中藥》簡介
中藥貼敷治療足跟痛
中藥內(nèi)外結(jié)合治療臁瘡56 例
中藥也傷肝
肝博士(2015年2期)2015-02-27 10:49:49
主站蜘蛛池模板: 国产在线专区| 亚洲精品男人天堂| 亚洲欧美h| 久久亚洲欧美综合| 污污网站在线观看| 国产白丝av| 国产成人亚洲无码淙合青草| 欧美在线国产| 中文字幕色在线| 亚洲色图在线观看| 欧美日韩精品综合在线一区| 亚洲中文字幕在线精品一区| 老司机精品99在线播放| 97国产精品视频人人做人人爱| 91精品最新国内在线播放| 国产亚洲精品yxsp| 国产素人在线| 日本午夜视频在线观看| 欧美日韩午夜视频在线观看| 久久综合色播五月男人的天堂| 97精品国产高清久久久久蜜芽 | 久久精品免费国产大片| 草草影院国产第一页| 久草热视频在线| 成人国产一区二区三区| 色AV色 综合网站| 国产系列在线| 国产精品开放后亚洲| 亚洲视频二| 亚洲性日韩精品一区二区| 国产在线麻豆波多野结衣| 日韩av手机在线| 亚洲a级在线观看| 亚洲国产日韩视频观看| 91亚洲影院| 国产成年女人特黄特色毛片免| 免费女人18毛片a级毛片视频| 国产浮力第一页永久地址| 四虎影视无码永久免费观看| 最新日韩AV网址在线观看| 91偷拍一区| 色综合a怡红院怡红院首页| 亚洲人免费视频| 国产一区二区精品高清在线观看| 国产导航在线| 国产一级毛片网站| av在线无码浏览| 一级毛片a女人刺激视频免费 | 欧美成人区| 97在线碰| 日本一区高清| 婷婷六月激情综合一区| 国内老司机精品视频在线播出| 99视频只有精品| 波多野结衣久久精品| 国产一区二区三区在线精品专区| 日韩黄色大片免费看| 亚洲AV色香蕉一区二区| 国产成人喷潮在线观看| 精品少妇人妻av无码久久| 色妞www精品视频一级下载| 网友自拍视频精品区| 日本欧美精品| 高潮毛片免费观看| 高清亚洲欧美在线看| 国产日韩精品一区在线不卡| AV网站中文| 国产高清在线观看| 久久中文无码精品| 91精品国产自产在线老师啪l| 成人无码一区二区三区视频在线观看 | 亚洲AV成人一区二区三区AV| 美美女高清毛片视频免费观看| 亚洲午夜天堂| 最近最新中文字幕免费的一页| 欧美yw精品日本国产精品| 亚洲欧美另类中文字幕| 热这里只有精品国产热门精品| 亚洲嫩模喷白浆| 欧美成人午夜影院| 妇女自拍偷自拍亚洲精品| 综合社区亚洲熟妇p|