999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

聯(lián)苯四甲酸及聯(lián)吡啶構(gòu)筑的一維鏈狀銀(Ⅰ)配合物的合成及晶體結(jié)構(gòu)

2012-12-11 11:37:10王記江侯向陽(yáng)曹培香高樓軍張美麗任宜霞

王記江 侯向陽(yáng) 曹培香 高樓軍 張美麗 任宜霞

(延安大學(xué)化學(xué)與化工學(xué)院,陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,延安 716000)

聯(lián)苯四甲酸及聯(lián)吡啶構(gòu)筑的一維鏈狀銀(Ⅰ)配合物的合成及晶體結(jié)構(gòu)

王記江*侯向陽(yáng) 曹培香 高樓軍 張美麗 任宜霞

(延安大學(xué)化學(xué)與化工學(xué)院,陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,延安 716000)

采用水熱法合成了一個(gè)新穎的配合物{[Ag(4,4′-bpy)][Ag2(H3btc)(H2btc)(4,4′-bpy)2]·3H2O}n(1)(H4btc=聯(lián)苯-2,2′,4,4′-四甲酸;4,4′-bpy=4,4′-聯(lián)吡啶),并對(duì)其進(jìn)行了元素分析、紅外光譜和X射線單晶衍射測(cè)定。配合物1屬于三斜晶系,空間群為P1,a=1.12251(6)nm,b=1.55401(8)nm,c=1.77459(9)nm,β=91.6410(10)°,V=2.8308(3)nm3,Z=2,Dc=1.764 g·cm-3,μ=1.113 mm-1,F(xiàn)(000)=1508,R1=0.0450,wR2=0.0862(I>2σ(I))。在1中,一維線性[Ag(4,4′-bpy)]+陽(yáng)離子鏈包含在一維{[Ag2(H3btc)(H2btc)(4,4′-bpy)2]-陰離子雙鏈與游離水分子通過(guò)分子間氫鍵組裝成的三維超分子結(jié)構(gòu)中。研究了配合物的熱穩(wěn)定性和電化學(xué)性質(zhì)。

銀配合物;聯(lián)苯四甲酸;晶體結(jié)構(gòu)

Recently,the chemistry of Ag(Ⅰ)complexes has attracted interest for a number of reasons.The Ag(Ⅰ)is d10electronic configuration and can adopt different coordination numbers from 2 to 4.Moreover,the Ag complexes offer not only the fascinating structure,but only a wide range of potential application in many aspects,suchas optical,electrical conductivity,catalysis and even magnetic materials[1-4].Up to now,a large numbers of Ag(Ⅰ)complexes formed by Ag(Ⅰ)and various N-donor ligands have been successfully synthesized and characterized[5-14].However,the complex based on biphenyl-2,2′,4,4′-tetracarboxylic acid with Ag(Ⅰ)has never been reported before.

Inspired by our previous works[15],we employedbiphenyl-2,2′,4,4′-tetracarboxylic acid(H4btc)and Ag(Ⅰ)to synthesize a novel complex,namely,{[Ag(4,4′-bpy)][Ag2(H3btc)(H2btc)(4,4′-bpy)2]·3H2O}n(1),which provides the first example of complex based on biphenyl-2,2′,4,4′-tetracarboxylate-Ag(Ⅰ).

1 Experimental

1.1 Materials and methods

All reagents and solvents employed werecommercially available and used without furtherpurification. The C, H and N microanalyses werecarried out with a Vario EL elemental analyzer.Thermogravimetric analysis was performed on aNETZSCH STA 449F3 analyzer. The IR spectra wererecorded with a Nicolet Avatar 360 FTIR spectrometerusing the KBr pellet technique.

1.2 Syntheses of complex 1

A mixture of AgAc(0.15 mmol),H4btc(0.1 mmol),4,4′-bpy(0.15 mmol)and 10 mL H2O was stirred for 30 min.The mixture was then placed in a 23 mL Teflonlined stainless steel vessel and heated for 160℃for 4 d.Colorless crystals were obtained when the mixture was cooled to room temperature.Yield:ca.36%based on Ag.Calcd.for C62H47Ag3N6O19(%):C 49.52;H 3.15;N 5.59.Found(%):C 49.50;H 3.20;N 5.62.IR(KBr pellet,cm-1):3 430s,1 692m,1 595vs,1 576s,1 413m,1367m,1215w,1057w,804m,626w.

1.3 Crystal structure determination

Diffraction intensities for the complex 1 was collected at 296(2)K on a Bruker Smart APEXⅡCCD diffractometer equipped with a graphite-monochromated Mo Kα radiation(λ=0.071073 nm)using an ω-φ scan mode.A semiempirical absorption correction was applied using the SADABS program[16].The structure was solved by direct methods and refined by full-matrix least-squares on F2using the SHELXS 97 and SHELXL 97 programs,respectively[17-18].Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geometrically calculated positions.A total of 14 469 reflections of complex 1 were collected in the range of 1.93°<θ<25.25°(-13≤h≤13,-18≤k≤18,-17≤l≤21)and 10 171 were independent with Rint=0.0273,of which 6660 with I>2σ(I)(refinement on F2)were observed and used in the succeeding structure calculation.The final R1=0.0450,wR2=0.0862(w=1/[σ2(Fo2)+(0.035 6P)2+0.000P],where P=(Fo2+2Fc2)/3),(Δρ)max=527 e·nm-3and(Δρ)min=-408 e·nm-3.Selected bond lengths and bond angles are listed in Table 1.

CCDC:840549.

Table 1 Selected bond lengths(nm)and bond angles(°)for complex 1

2 Result and discussion

2.1 Description of crystal structures

Complex 1 features a complex{[Ag(4,4′-bpy)][Ag2(H3btc)(H2btc)(4,4′-bpy)2]·3H2O}ncontains 1D linear polymeric chains of[Ag(4,4′-bpy)]encapsulated within cavities built by 1D double-chains of[Ag2(H3btc)(H2btc)(4,4′-bpy)2].As depicted in Fig.1,the asymmetric unit of 1 contains three crystallographically independent Ag(Ⅰ)ions.Ag(1)is coordinated by two oxygen atoms fromtwo(H2btc)2-ligands(Ag-O 0.245 9(3)and 0.2489(3)nm)and two nitrogen atoms from two bpy ligands(Ag-N 0.223 2(4)and 0.223 1(3)nm)to furnish a distorted tetrahedral coordination.Different from those of Ag(1),Ag(2)adopts a distorted T-shaped coordination and is coordinated by an oxygen atom from one(H3btc)-ligands(Ag-O 0.264 9(3)nm)and two nitrogen atoms from two bpy ligands(Ag-N 0.215 7(3)and 0.215 0(3)nm).Ag(3)exhibits a linear coordination and is coordinated by two nitrogen atoms from two bpy ligands(Ag-N 0.209 8(4)and 0.210 8(4)nm).All the Ag-O and Ag-N bond lengths are in the normal ranges[13].

Fig.1 Coordination environments of Ag(Ⅰ)in complex 1

In the complex 1,Ag(1)and Ag(2)are linked together by μ2-bridged bpy ligands to form an infinite 1D chain depicted in Fig.2.The(H3btc)-ligands are located at the same side of the[Ag2(4,4′-bpy)2]chain.Two such neighboring[Ag2(H3btc)(4,4′-bpy)2]are joined together by(H2btc)2-anions facing opposite directions with bidentate bridging coordination mode to form a double-chain structure(Fig.2),which is further consolidated by the formation of inter-chain Ag…Ag interaction(Ag(1)…Ag(1B)0.311 4(8)nm,Ag(2)…Ag(2C)0.327 3(9)nm).The Ag…Ag distances are significantly shorter than the van der Waals contact distance 0.340 nm[19].Different from those of Ag(1)and Ag(2),Ag(3)is linked together by μ2-bridged bpy ligands to form 1D linear chain(Fig.3),which exists as a cation([Ag(4,4′-bpy)]+).

Fig.2 1D[Ag2(H3btc)(H2btc)(4,4′-bpy)2]-double-chain

Fig.3 1D linear[Ag(4,4′-bpy)]+chain

Adjacent double-chains are connected together through intermolecular hydrogen bonds(distances O…O are in the range 0.254 8~0.294 6 nm)between the dissociative water molecules and uncoordinatedcarboxyl oxygen atoms, to generate a 3D supramolecular architecture.Interestingly,1D linear[Ag(4,4′-bpy)]+chains serving as the counter ions separated by dissociative water molecules reside in the cavities of 1D{[Ag2(H3btc)(H2btc)(4,4′-bpy)2]-double-chains(Fig.4).However,no obvious intermolecular interactions(hydrogen bonding,π-π stacking)have been found between the 1D linear chains and 1D double-chains in complex 1.It is likely that the electrostatic and van der Waals interactions play a crucial role in the assembly of this novel supramolecular architecture[10].

Fig.4 Clathrate-like structures of complex 1

2.2 Thermal analysis

The stability of the complex 1 was investigated by thermogravimetric analysis(Fig.5).The first weight loss of 3.76%for 1 is in the range from 26 to 116℃corresponding to the removal of H2O(calcd.3.59%).Upon further heating,an obvious weight loss(73.01%)occurs in the temperature range of 116~700℃,corresponding to the release of(H3btc)-,(H2btc)2-and 4,4′-bpy ligands(calcd.74.88%).After 700℃no weight loss is observed,indicating the complete decomposition of 1.The residual weight 23.23%(calcd.23.12%)corresponds to Ag2O.

Fig.5 TG of the complex 1

2.3 Electrochemistry

In the CV measurement,tri-electrode system was used with glass/C as working electrode,Pt as auxiliary electrode and SCE as reference electrode.The solvent is the mixture of methanol and water with complex condensation of 2.0×10-5mol·L-1.KCl was used as the supporting electrolyte was adopted.As depicted in Fig.6,one reduction peak(-0.856 V)corresponds to the Ag(Ⅰ)→Ag(0)single-electron reduction,the other oxidation peak(0.446 V)correspond to Ag(0)→Ag(Ⅰ)single-electron oxidation.Obviously,the transfer in the electrode reaction is irreversible.We can also deduce that the oxidizability of Ag(Ⅰ)in the title complex has been weakened.This study is significant for exploring the interrelation bet ween structure and property,developing the potential electric functional materials.

Fig.6 Cyclic voltammograms of complex 1

[1]Li C P,Chen J,Yu Q.Cryst.Growth Des.,2010,10:1623-1632

[2]Zheng S L,Zheng J P,Wong W T,et al.J.Am.Chem.Soc.,2003,125:6882-6883

[3]Natarajan S,Mandal S.Angew.Chem.Int.Ed.,2008,47:4798-4828

[4]HUANG Yan-Ju(黃艷菊),NI Liang(倪良).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(8):1649-1653

[5]Xiong K C,Wu M Y,Zhang Q F,et al.Chem.Commun.,2009:1840-1842

[6]Sun D,Luo G G,Zhang N,et al.Polyhedron,2010,29:1243-1250

[7]Sun D,Zhang N,Xu Q J,et al.Inorg.Chim.Acta,2011,368:67-73

[8]Sun D,Luo G G,Xu Q J,et al.Inorg.Chem.Commun.,2009,12:782-784

[9]Pramanik A,Das G.Cryst Eng Comm,2010,12:401-405

[10]Jiang J J,Li X P,Zhang X L,et al.Cryst Eng Comm,2005,7:603-607

[11]Xiong K C,Wu M Y,Zhang Q F,et al.Chem.Commun.,2009:1840-1842

[12]Li B,Zang S Q,Ji C,et al.Dalton Trans.,2011,40:788-792

[13]Ling Y,Chen Z X,Zhou Y M,et al.Cryst Eng Comm,2011,13:1504-1508

[14]Hao H J,Sun D,Li Y H,et al.Cryst.Growth Des.,2011,11:3564-3578

[15]Gao L J,Cao P X,Wang J J,et al.J.Coord.Chem.,2011,8:1299-1308

[16]Sheldrick G M.SADABS,A Program for Empirical Absorption Correction of Area detector Data,University of G?ttingen,Germany,1997.

[17]Sheldrick G M.SHELXS 97,Program for Crystal Structure Solution,University of G?ttingen,Germany,1997.

[18]Sheldrick G M.SHELXL 97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

[19]Jansen M.Angew.Chem.Int.Ed.,Engl.,1987,26:1098-1110

Synthesis and Crystal Structure of 1D Chainlike Ag(Ⅰ)Complex Assembled by Biphenyl-2,2′,4,4′-tetracarboxylic Acid and 4,4′-Bipyridine

WANG Ji-Jiang*HOU Xiang-Yang CAO Pei-XiangGAO Lou-Jun ZHANG Mei-LiREN Yi-Xia
(Department of Chemistry and Chemical Engineering,Shaanxi Key Laboratory of Chemical Reaction Engineering,Yan′an University,Yan′an,Shannxi 716000,China)

A novel Ag(Ⅰ)complex based on 4,4′-bipyridine(4,4′-bpy)and biphenyl-2,2′,4,4′-tetracarboxylic acid(H4btc),namely,{[Ag(4,4′-bpy)][Ag2(H3btc)(H2btc)(4,4′-bpy)2]·3H2O}n(1)has been hydrothermally synthesized and characterized by elemental analysis,IR spectroscopy and single-crystal X-ray diffraction analysis.The complex crystallizes in triclinic system,space group P1 with a=1.122 51(6)nm,b=1.554 01(8)nm,c=1.774 59(9)nm,β=91.6410(10)°,V=2.8308(3)nm3,Z=2,Dc=1.764 g·cm-3,μ=1.113 mm-1,F(000)=1508,and the final R1=0.0450,wR2=0.0862 for I>2σ(I).In complex 1,1D linear[Ag(4,4′-bpy)]+chains reside in 3D supramolecular structure of 1D{[Ag2(H3btc)(H2btc)(4,4′-bpy)2]-double-chains and dissociative water molecules assembled into by hydrogen bonds.In additional,thermal stability and electrochemistry of 1 have also been studied.CCDC:840549.

Ag(Ⅰ)complex;bipheny ltetracarboxylic acid;cryatal structure

O614.122

A

1001-4861(2012)04-0829-04

2011-10-30。收修改稿日期:2011-12-23。

國(guó)家自然科學(xué)基金(No.21103146)和陜西省教育廳科研基金(No.11JK0572)資助項(xiàng)目。

*通訊聯(lián)系人。E-mail:yadxwjj@126.com,Tel(Fax):0911-2332037;會(huì)員登記號(hào):S06N0331M1005。

主站蜘蛛池模板: 中国国产A一级毛片| 国产成人精品免费av| 成人在线视频一区| 亚洲乱码在线播放| 欧美97欧美综合色伦图| 97成人在线视频| 日本欧美精品| 国产成人AV男人的天堂| 国产人碰人摸人爱免费视频| 麻豆国产精品| 日本不卡在线| 国产在线视频福利资源站| 欧洲高清无码在线| 99久久性生片| 女人天堂av免费| 久操中文在线| 高清欧美性猛交XXXX黑人猛交 | 久久a毛片| 综合人妻久久一区二区精品 | 亚洲成a人片7777| 久久99精品久久久久久不卡| 日本精品视频一区二区| 国产在线欧美| 久久久久亚洲AV成人人电影软件| 91九色国产porny| 美女一级毛片无遮挡内谢| 精品国产免费观看一区| 99热这里只有精品久久免费| 三上悠亚精品二区在线观看| 在线观看91香蕉国产免费| 精品久久久久成人码免费动漫| 亚瑟天堂久久一区二区影院| 国产第一页免费浮力影院| 四虎影视8848永久精品| 久久综合成人| 99精品伊人久久久大香线蕉| 亚洲精品第五页| 午夜小视频在线| 亚洲综合婷婷激情| 免费看一级毛片波多结衣| 国产成人综合在线观看| 日本亚洲欧美在线| 久久性视频| 大陆精大陆国产国语精品1024| 亚洲国产在一区二区三区| 亚洲欧美人成人让影院| 91精选国产大片| 国产成人a毛片在线| 9966国产精品视频| 97久久超碰极品视觉盛宴| 99久久精品免费观看国产| a级毛片免费看| a色毛片免费视频| 日韩大片免费观看视频播放| 啊嗯不日本网站| 久久人搡人人玩人妻精品 | 成人精品免费视频| 国产成人久久综合一区| 国产精品视频猛进猛出| 欧洲成人免费视频| 不卡的在线视频免费观看| 2021精品国产自在现线看| 国产精品久久久久无码网站| 国产精品手机在线观看你懂的| 老司机精品99在线播放| 日韩AV无码免费一二三区| 黄色免费在线网址| 日韩精品一区二区三区中文无码| 97国产精品视频人人做人人爱| 中文字幕在线视频免费| 亚洲A∨无码精品午夜在线观看| 亚洲国产黄色| 国产成人久久777777| 亚洲日韩高清无码| 六月婷婷精品视频在线观看| 亚洲色图欧美视频| 欧美啪啪视频免码| 欧美亚洲国产一区| 热伊人99re久久精品最新地| 午夜视频www| 国产一级小视频| 久久久久国产精品免费免费不卡|