999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Some New Properties of An E-Convex Function

2012-12-09 00:55:38ZHOUMi
關鍵詞:性質利用

ZHOU Mi

(Branch College of Technology,SanYa College of HaiNan University,Sanya 572022,China)

Some New Properties of An E-Convex Function

ZHOU Mi

(Branch College of Technology,SanYa College of HaiNan University,Sanya572022,China)

In Ref.1,Youness introduced a class of sets and a class of functions called E-convex sets and E-convex functions by relaxing the de fi nitions of convex sets and convex functions.In Ref.2,Duca and Luspa gave some properties of E-convex functions using two notions of epigraph(epiE(f)and epiE(f)).In this paper,on the basis of the results obtained in Ref.2,some new characterizations of E-con?vex functions are discussed under a relatively weak convexity condition.

E-convex set;E-convex function;nearly convex set;epigraph;slack2-convex set

CLC mumber:O 221.2;O 177.92 Document code:A Article ID:1674-4942(2012)01-0005-04

1 Introduction

The concept of convexity is important for studies in optimization and variational inequalities.To gener?alize the convexity of functions attracted more atten?tions of researchers[1-7].Youness introduced the con?cepts of E-convex sets and E-convex functions in Ref.1.For convenience,we recall some de fi nitions and give other related concepts and lemmas,which are required in the later discussions.

De fi nition 1 Let E∶Rn→Rnbe a function.A subset M?Rnis said to be E-convex if

De fi nition 2 Let M be a nonempty subset of Rnand let E:Rn→Rnbe a function.A function f∶M→R is said to be E-convex on M if M is E-convex and

Lemma 1 [See Ref.1.]If a set M?Rnis E-con?vex with respect to a mapping

E∶Rn→Rnthen E(M)?M,

where E(M)={E(M)|x∈M}

Next,we give another concept of a nearly convex set.

De fi nition 3 A subset M of Rnis said to be near?ly convex,if there is an α∈(0 ,1)such that for all x,y∈M,we have αx+(1 -α)y∈M.

Remark 1 It is easy to check that every con?vex set is also nearly convex,but the converse is not always true.For example,the set

is nearly convex but not convex.

If M is a nonempty subset of Rnand E∶M→M and f∶M→R are two functions.We consider the fol?lowing four sets:

De fi nition 4 If X?Rn,then f∶X→R is said to be upper semicontinuous at-x ∈Xif,for every ε>0,?δ>0 such that for all x∈X with x∈B,

In Ref.1,the concept of E-convex sets and E-convex functions were given,its properties were proposed,and the related results were used in the study of E-convex programming.In Ref.2,Duca and Lupsa gave some characterizations of E-convex func?tion using notions of epiE(f)and epiE(f).In this pa?per,on the basis of the results obtained in Ref.2,we discuss some new characterizations of E-convex func?tions under a relatively weak convexity condition.

2 Main Results

First,let us review the theorem 1[See Ref.2]be?low.

Theorem 1 Let M be a nonempty subset of Rnand let f:M→R and E:Rn→Rnbe two functions.If M is an E-convex set and epiE(f)is a convex set,then f is an E-convex function on M.

We can exclude the convexity hypothesis of the set epiE(f)and in exchange we ask for the set epiE(f)to be near convex and the function f to be upper semi?continuous.

Now see the following theorem as follows.

Theorem 2 Let M be a nonempty subset of Rnand let f∶M→R be an upper semicontinuous function on M,and E:Rn→Rnbe another function.If M is an E-convex set and there exist an α0∈( )0,1 such that

Then,f is an E-convex function on M.

To prove this theorem,firstly we need to intro?duce the following lemma.

Lemma 2 If f is a real-valued function on an E-convex subset M of Rnand if there exists an α0∈(0,1)such that

Thus,we can get that

[1]Youness E A.E-convex sets,E-convex functions and E-convex programming[J].Journal of optimization Theo?ry and Applications,1999,102:439-450.

[2]Duca D I,Lupsa L.On the E-epigraph of an E-convex function[J].Journal of Optimization Theory and Applica?tions,2006,129(2):341-348.

[3]Yong W H.Optimality Conditions for Vector Optimiza?tion with Set-Valued Maps[J].Bull Austral Math Soc,2000,66:317-330.

[4]Chen X S.Some properties of semi-E-convex functions[J].Journal of Mathematical Analysis and Applications,2002,275:251-262.

[5]Noor M A.Fuzzy preinvex functions[J].Fuzzy Sets and Systems,1994,64:95-104.

[6]Abou-Tair I A,Sulaiman W T.Inequalites via convex functions,Internat[J].J Math Math Sci,1999,22:543-546.

[7]Lupsa L.Slack convexity with respect to a given set,Itiner?ant Seminar on Functional Equations,Approximation,and Convexity[M].Babes-Bolyai University Publishing House Cluj-Napoca,Romania,1985:107-114.

E-凸函數的一些新性質

周密

(海南大學三亞學院 理工分院,海南 三亞 572022)

文獻[1]中Youness提出一類E-凸集和一類E-凸函數,削弱了已有的凸集和凸函數.文獻[2]中Duca和Luspa 利用兩種上方圖的概念(epiE(f)和 epiE(f)),給出了E-凸函數的一些性質.本文在較弱的凸性條件上,利用文獻[3]所得結論給出了E-凸函數的一些新性質.

E-凸集;E-凸函數;幾乎凸集;上方圖;松馳2-凸集

2011-10-10

海南省自然科學基金資助項目(110009)

畢和平

猜你喜歡
性質利用
利用min{a,b}的積分表示解決一類絕對值不等式
中等數學(2022年2期)2022-06-05 07:10:50
利用倒推破難點
一類非線性隨機微分方程的統計性質
數學雜志(2021年6期)2021-11-24 11:12:00
隨機變量的分布列性質的應用
一類多重循環群的剩余有限性質
完全平方數的性質及其應用
中等數學(2020年6期)2020-09-21 09:32:38
利用一半進行移多補少
九點圓的性質和應用
中等數學(2019年6期)2019-08-30 03:41:46
利用數的分解來思考
Roommate is necessary when far away from home
主站蜘蛛池模板: 青青久久91| 久久国产精品波多野结衣| 国产在线高清一级毛片| 色婷婷综合在线| 国内自拍久第一页| 青草精品视频| 国产激情国语对白普通话| 国产玖玖视频| 欧美笫一页| 亚洲一道AV无码午夜福利| 国产日韩欧美一区二区三区在线 | AV在线麻免费观看网站| 久久综合一个色综合网| 欧美人与动牲交a欧美精品| 在线看AV天堂| 狼友视频国产精品首页| a天堂视频| 亚洲日本韩在线观看| 国产精品九九视频| 无码中文字幕精品推荐| 高清国产va日韩亚洲免费午夜电影| 婷婷丁香在线观看| 国产日本一线在线观看免费| 激情六月丁香婷婷| 91免费片| 亚洲视频四区| 天天躁狠狠躁| 91青青视频| 婷婷亚洲最大| 国产精品思思热在线| 久久无码av三级| 亚洲毛片网站| 91福利免费视频| 久久精品免费国产大片| 久久人人爽人人爽人人片aV东京热 | 亚洲第一中文字幕| 91精品国产91久久久久久三级| 尤物特级无码毛片免费| 国产幂在线无码精品| AV天堂资源福利在线观看| 久草视频福利在线观看| 日韩精品久久无码中文字幕色欲| 任我操在线视频| 国产性爱网站| 国产成人8x视频一区二区| 看国产毛片| 综合久久五月天| 在线亚洲精品自拍| 精品久久香蕉国产线看观看gif| 国产毛片片精品天天看视频| 一区二区三区国产| 国产精品无码一二三视频| 日本在线免费网站| 草逼视频国产| 91欧美在线| 天天色天天综合| 男人天堂伊人网| 日韩精品久久久久久久电影蜜臀| 一级毛片a女人刺激视频免费| 福利小视频在线播放| 欧美在线视频不卡| 国产jizz| 国产综合色在线视频播放线视 | 婷婷亚洲天堂| 国产xx在线观看| 亚洲高清中文字幕| 成年人久久黄色网站| 一本大道视频精品人妻| 婷婷综合亚洲| 999精品视频在线| 她的性爱视频| 国产日韩精品欧美一区灰| 欧美精品aⅴ在线视频| 久久精品国产亚洲麻豆| 国产电话自拍伊人| 99精品国产自在现线观看| 国产精品吹潮在线观看中文| 2021国产精品自产拍在线观看| 国内精品视频在线| a级毛片免费看| 一区二区三区国产精品视频| 中美日韩在线网免费毛片视频 |