999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

過(guò)充電保護(hù)添加劑1,4-二甲氧基苯的反應(yīng)機(jī)理

2012-11-30 10:41:28李田田王朝陽(yáng)邢麗丹李偉善許夢(mèng)清
物理化學(xué)學(xué)報(bào) 2012年4期

李田田 王朝陽(yáng) 邢麗丹 李偉善,2,3,* 彭 彬 許夢(mèng)清,2,3

顧鳳龍1,2,3 胡社軍1,2,3

(1華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,廣州510006;2華南師范大學(xué),廣東高校電化學(xué)儲(chǔ)能與發(fā)電技術(shù)重點(diǎn)實(shí)驗(yàn)室,廣州510006; 3華南師范大學(xué),電化學(xué)儲(chǔ)能材料與技術(shù)教育部工程研究中心,廣州510006)

過(guò)充電保護(hù)添加劑1,4-二甲氧基苯的反應(yīng)機(jī)理

李田田1王朝陽(yáng)1邢麗丹1李偉善1,2,3,*彭 彬1許夢(mèng)清1,2,3

顧鳳龍1,2,3胡社軍1,2,3

(1華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,廣州510006;2華南師范大學(xué),廣東高校電化學(xué)儲(chǔ)能與發(fā)電技術(shù)重點(diǎn)實(shí)驗(yàn)室,廣州510006;3華南師范大學(xué),電化學(xué)儲(chǔ)能材料與技術(shù)教育部工程研究中心,廣州510006)

采用密度泛函理論(B3LYP/6-311+G(d,p))和MP2/6-311+G(d,p)方法,研究鋰離子電池過(guò)充電保護(hù)添加劑1,4-二甲氧基苯(p-DMOB)的作用機(jī)理.計(jì)算結(jié)果表明,在過(guò)充時(shí),p-DMOB優(yōu)先于溶劑分子(乙基甲基碳酸酯、二甲基碳酸酯、碳酸乙酯)發(fā)生氧化反應(yīng).用B3LYP和MP2計(jì)算所得的p-DMOB理論氧化電位接近,分別為4.12和4.05 V(vs Li/Li+).p-DMOB氧化時(shí)首先失去一個(gè)電子,生成p-DMOB+●正離子自由基,用B3LYP和MP2方法計(jì)算所得的相應(yīng)能量變化分別為701.24和728.27 kJ·mol-1.失去電子后苯環(huán)的共軛性受到破壞,隨后p-DMOB+●苯環(huán)上的C―H鍵發(fā)生斷裂,失去H+并形成p-DMOB·自由基.用B3LYP和MP2方法計(jì)算所得的相應(yīng)能量變化分別為1349.78和1810.99 kJ·mol-1.p-DMOB·自由基很不穩(wěn)定,會(huì)在電極表面發(fā)生聚合反應(yīng)形成聚合物膜,用B3LYP和MP2方法計(jì)算所得的相應(yīng)能量變化分別為-553.37和-1331.20 kJ·mol-1.

鋰離子電池;過(guò)充電保護(hù)添加劑;1,4-二甲氧基苯;反應(yīng)機(jī)理;密度泛函理論

1 Introduction

Lithium ion battery(LIB)has been widely used to power portable electronic devices such as camera,mobile phone,and computer.It is also demonstrated to be promising for largescale applications such as hybrid or pure electric vehicles.1-6One of the important limitations for the application of LIB is safety concern.7,8It is well known that solvents in LIB tend to decompose on anode or cathode surface when LIB is overcharged,9-12and LIB becomes thermally unstable at overcharged state,which sometimes smokes,ignites,and even explodes.13,14Much effort has been devoted to improving the safety characteristics of LIB in recent years.The use of solid polymer or ionic liquid electrolytes provides a safe solution to the decomposition of solvents that have been used in commercial LIBs,but the ionic conductivity of these electrolytes is too low to be used in practice.Alternatively,various types of electrolyte additives,such as polymerizable compounds,have been proposed as additives in electrolyte to prevent the LIBs from overcharging.15,16Polymerizable compounds,also called“shutdown additives”,are found to be effective for the overcharge protection of LIB.These additives are electrochemically polymerized forming an insulating polymer layer that blocks charge current from flowing further when the LIB is overcharged.

It has been reported by several research groups that many derivatives based on 1,4-dimethoxy benzene(p-DMOB),the compounds in which the hydrogen atoms on the benzene ring of p-DMOB are replaced by electron-donating or electron-withdrawing groups,are functioned as redox shuttles for overcharge protection of LIB.17-21A LIB is protected from overcharge by a redox shuttle through the reduction of oxidized shuttle on anode and the oxidation of reduced shuttle on cathode of LIB.The reaction process for the p-DMOB based derivatives as redox shuttles has been understood through the theoretical calculations.22Different from its derivatives,however, p-DMOB was found to function as a shutdown additive.23The aim of this paper is to understand the reaction mechanism of p-DMOB as a shutdown additive for lithium ion battery.

2 Computational details

All calculations have been performed using Gaussian 03 package.24The geometries are optimized by the B3LYP and MP2 methods in conjunction with the 6-311+G(d,p)basis set.25,26The solvent effects are considered by employing the integral equation formalism of the polarizable continuum model (IEFPCM).27A dielectric constant of 31.3 is adopted,which is a weighted average value between the dielectric constants of ethylene carbonate(EC:89),dimethyl carbonate(DMC:3), and ethylmethyl carbonate(EMC:2)(nEC/nDMC/nEMC=1:1:1).To confirm each optimized stationary point and make zero-point energy(ZPE)corrections,frequency analyses are done with the same basis set.Enthalpy and Gibbs free energy are obtained at 298.2 K.Charge distribution is analyzed by the natural bond orbital(NBO)theory.

The absolute potential(φabs)for the oxidation of p-DMOB is obtained based on the following equation:28

where IP is ionization potential,ΔS is the entropy difference between p-DMOB and p-DMOB+●in gas phase,ΔG0Sis the Gibbs free energy change of p-DMOB or p-DMOB+●between gas phase and solvent,and F is Faraday constant.The oxidation potential,φ(p-DMOB),of the compounds in this paper is given with respect to φabs(Li/Li+)that is the absolute potential of Li/ Li+(1.4 V).

3 Results and discussion

3.1 Oxidation activity and oxidative potential

The optimized geometric structures of p-DMOB,ethyl methyl carbonate,dimethyl carbonate,ethylene carbonate,and their radical cations are presented in Fig.1.

Table 1 lists the frontier molecular orbital energy and ionization potential(IP)of p-DMOB and solvents in gas phase,optimized by B3LYP and MP2.On the basis of the molecular orbital theory,the ability of a molecule to lose one electron depends on the energy level of the highest occupied molecular orbital (HOMO).There exists difference in calculated values of HOMO or IP between B3LYP and MP2,but the same conclusion on the difference among p-DMOB,EMC,DMC,and EC can be drawn from these two methods,i.e.,p-DMOB is oxidized prior to the solvents.The preferable reduction oxidation of p-DMOB is important for p-DMOB to be used as a shutdown additive.

Table 2 lists the thermodynamic properties of p-DMOB and its radical cation(p-DMOB+●)in gas phase(g)and solvent(s). With these data,we can obtain the theoretical oxidation potential(Ecal)of p-DMOB,which is 4.12 V(vs Li/Li+)by B3LYP and 4.05 V(vs Li/Li+)by MP2,respectively.Both theoretical values are in good agreement with the experimentally obtained oxidation potential,which is 3.9 V(vs Li/Li+).20

3.2 Oxidative process of p-DMOB

Fig.1 Optimized geometric structures of p-DMOB,EMC,DMC,EC and their radical cations

Table 1 The frontier molecular orbital energy and IPof p-DMOB and solvents in gas phase

The initial oxidation of p-DMOB involves a one-electron transfer,resulting in radical cation(p-DMOB+●).The optimized geometry is presented in Fig.1.The charge distributions on atoms in p-DMOB and p-DMOB+●obtained by natural population analysis(NPA)are presented in Table 3.It can be seen from Table 3 that the charge distributions on atoms in p-DMOB and p-DMOB+●are quite different.The charge changes on―C6H4,―O11CH3,―O12CH3are-0.589e,-0.205e,-0.205e by B3LYP and-0.687e,-0.154e,-0.155e by MP2,respectively.The results obtained by both B3LYP and MP2 indicate that the electron mainly bereaves from benzene ring and the charge conjugation of benzene ring is damaged after the initial oxidation of p-DMOB.

Scheme 1 shows the possible pathways for the further oxidation.The p-DMOB+●loses a hydrogen ion forming a radical p-DMOB·with the cleavage of the C1―H7bond and p-DMOB· copolymerizes by itself forming a polymer.The ΔE1,ΔE2,and ΔE3are defined as the activation energies in the reactions p-DMOB-e→p-DMOB+●,p-DMOB+●-H+→p-DMOB·,and p-DMOB·+p-DMOB·→p-DMOB-1,respectively.The optimized geometry structures of p-DMOB and p-DMOB+●are shown in Fig.1,and the optimized geometry structures of p-DMOB·and p-DMOB-1 are presented in Fig.2.

The energies of compounds involved in the polymerization of p-DMOB are presented in Table 4.The energy variation of p-DMOB+●with the bond length of C1―H7is shown in Fig.3.It can be found from Fig.3 that the energy of p-DMOB+●increases with increasing the bond length.This suggests that there is no transition state available during the breaking of C1―C7bond.The obtained ΔE1,ΔE2,ΔE3values are 701.24,1349.78,-553.37 kJ·mol-1by B3LYP and 728.27,1810.99,-1331.20 kJ·mol-1by MP2,respectively.Although ΔE2is large,the sum of ΔE2and ΔE3is small,compared with ΔE1.Therefore,the polymerization is preferable and p-DMOB+●functions as a shutdown additive for the overcharge protection of LIB.

From the obtained results above,it can be concluded that p-DMOB is preferably to be oxidized forming a polymerthrough the breaking of C―H bond on benzene ring.Differently,the C―H bond on benzene ring in the radical cations formed from the one-electron oxidation of p-DMOB derivatives cannot be broken.Since the radical cations of p-DMOB derivatives are hard to oxidize further,they are preferably reduced on anode and turn back to the derivative molecules.22This is why p-DMOB functions as a shutdown additive but its derivatives as shuttle additives.

Table 2 Thermodynamic properties of p-DMOB and its radical cation(p-DMOB+●)in gas phase(g)and solvent(s)

Table 3 Charge distribution(e)on atoms in p-DMOB and p-DMOB+●obtained by natural population analysis

Fig.2 Optimized geometry structures of p-DMOB·and p-DMOB-1

Table 4 Energy of compounds involved in the polymerization of p-DMOB

Fig.3 Energy variation of p-DMOB+●with the bond lengths of C1―H7

4 Conclusions

The reaction mechanism of p-DMOB as an overcharge protection additive for lithium ion battery was understood with the calculation based on B3LYP/6-311+G(d,p)and MP2/6-311+ G(d,p).Based on the calculated results,p-DMOB is oxidized prior to the solvents when the battery is overcharged.The initial oxidation of p-DMOB involves a one-electron transfer from p-DMOB resulting in a radical cation p-DMOB+●,the corresponding energy is 701.24 kJ·mol-1by B3LYP and 728.27 kJ·mol-1by MP2.The radical cation loses a hydrogen ion forming the radical p-DMOB·with the cleavage of the C―H bond on benzene ring and p-DMOB·copolymerizes forming a polymer.

(1)Ménard,L.;Fontès,G.;Astier,S.Energy Convers.Manage. 2010,327.

(2)Yu,Y.;Gu,L.;Zhu,C.;Aken,P.A.;Maier,J.J.Am.Chem.Soc. 2009,131,15984.

(3)Yao,Z.D.;Wei,W.;Wang,J.L.;Yang,J.;Nuli,Y.N.Acta Phys.-Chim.Sin.2011,27,1005. [姚真東,魏 巍,王久林,楊 軍,努麗燕娜.物理化學(xué)學(xué)報(bào),2011,27,1005.]

(4) Fergus,J.W.J.Power Sources 2010,195,939.

(5)Xu.J.;Yao,W.H.;Yao,Y.W.;Wang,Z.C.;Yang,Y.Acta Phys.-Chim.Sin.2009,25,201. [許 杰,姚萬(wàn)浩,姚宜穩(wěn),王周成,楊 勇.物理化學(xué)學(xué)報(bào),2009,25,201.]

(6)Xu,M.Q.;Zuo,X.X.;Li,W.S.;Zhou,H.J.;Liu,J.S.;Yuan, Z.Z.Acta Phys.-Chim.Sin.2006,22,335.[許夢(mèng)清,左曉希,李偉善,周豪杰,劉建生,袁中直.物理化學(xué)學(xué)報(bào),2006,22, 335.]

(7) Feng,J.K.;Ai,X.P.;Cao,Y.L.;Yang,H.X.Electrochem. Commun.2007,9,25.

(8)Chung,Y.S.;Yoo,S.H.;Kim,C.K.Ind.Eng.Chem.Res.2009, 48,4346.

(9) Matsuta,S.;Kato,Y.;Ota,T.;Kurokawa,H.;Yoshimura,S.; Fujitani,S.J.Electrochem.Soc.2001,148,A7.

(10) Moshkovich,M.;Cojocaru,M.;Gottlieb,H.E.;Aurbach,D. J.Electroanal.Chem.2001,497,84.

(11)Xing,L.D.;Wang,C.Y.;Li,W.S.;Xu,M.Q.;Meng,X.L.; Zhao,S.F.J.Phys.Chem.B 2009,113,5181.

(12)Xing,L.D.;Li,W.S.;Wang,C.Y.;Gu,F.L.;Xu,M.Q.;Tan, C.L.;Yi,J.J.Phys.Chem.B 2009,113,16596.

(13) Balakrishnan,P.G.;Ramesh,R.;Kumar,T.P.J.Power Sources 2006,155,401.

(14) Leising,R.A.;Palazzo,M.J.;Takeuchi,E.S.;Takeuchi,K.J. J.Power Sources 2001,97,681.

(15) Li,S.L.;Ai,X.P.;Feng,J.K.;Cao,Y.L.;Yang,H.X.J.Power Sources 2008,184,553.

(16)Xu,M.Q.;Xing,L.D.;Li,W.S.;Zuo,X.X.;Shu,D.;Li,G.L. J.Power Sources 2008,184,427.

(17) Chen,J.;Buhrmester,C.;Dahn,J.R.Electrochem.Solid-State Lett.2005,8,A59.

(18) Chen,Z.H.;Amine,K.Electrochim.Acta 2007,53,453.

(19)Taggougui,M.;Carré,B.;Willmann,P.;Lemordant,D. J.Power Sources 2007,174,1069.

(20)Wang,R.L.;Dahn,J.R.J.Electrochem.Soc.2006,153,A1922.

(21) Zheng,H.H.;Wang,X.J.;Li,B.;Qin,J.H.Chin.J.Power Sources 2006,30,511.[鄭洪河,王顯軍,李 苞,秦建華.電源技術(shù),2006,30,511.]

(22) Li,T.T.;Xing,L.D.;Li,W.S.;Peng,B.;Xu,M.Q.;Gu,F.L.; Hu,S.J.J.Phys.Chem.A 2011,115,4988.

(23) Demartinez,M.C.;Marquez,O.P.;Marquez,J.;Hahn,F.; Beden,B.;Crouigneau,P.;Rakotondrainibe,A.;Lamy,C.Syth. Met.1997,88,187.

(24) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision B.05;Gaussian Inc.:Pittsburgh,PA,2003.

(25)Abbotto,A.;Streitwieser,A.;Schleyer,P.R.J.Am.Chem.Soc. 1997,119,11255.

(26)Wang,Y.;Balbuena,P.B.J.Phys.Chem.A 2001,105,9972.

(27)Tomasi,J.;Mennucci,B.;Cammi,R.Chem.Rev.2005,105, 2999.

(28) Trasatti,S.Pure Appl.Chem.1986,58,955.

October 31,2011;Revised:January 3,2012;Published on Web:January 13,2012.

Reaction Mechanism of 1,4-Dimethoxy Benzene as an Overcharge Protection Additive

LI Tian-Tian1WANG Chao-Yang1XING Li-Dan1LI Wei-Shan1,2,3,*PENG Bin1
XU Meng-Qing1,2,3GU Feng-Long1,2,3HU She-Jun1,2,3
(1School of Chemistry and Environment,South China Normal University,Guangzhou 510006,P.R.China;2Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes,South China
Normal University,Guangzhou 510006,P.R.China;3Engineering Research Center of Materials and Technology for Electrochemical Energy Storage(Ministry of Education),South China Normal University,Guangzhou 510006,P.R.China)

The reaction mechanism of 1,4-dimethoxybenzene(p-DMOB)as an overcharge protection additive for lithium ion batteries was determined by theoretical calculation of density functional theory (DFT)at the level of B3LYP/6-311+G(d,p)and MP2/6-311+G(d,p).It was found that p-DMOB is oxidized prior to the solvents,ethyl methyl carbonate,dimethyl carbonate,and ethylene carbonate,when the lithium ion battery is overcharged.The calculated oxidative potentials of p-DMOB by B3LYP and MP2 methods are well in agreement at 4.12 and 4.05 V(vs Li/Li+),respectively.The initial oxidation of p-DMOB involves a one-electron transfer resulting in a radical cation p-DMOB+●.The corresponding energy variations were 701.24 and 728.27 kJ·mol-1from B3LYP and MP2 calculations,respectively.The p-DMOB+●species then loses one proton forming a radical p-DMOB·through the breaking of a C―H bond on the benzene ring, with the corresponding energy variations of 1349.78 and 1810.99 kJ·mol-1for B3LYP and MP2, respectively.The p-DMOB·species is unstable and copolymerizes forming an insulated polymer with the corresponding energy variations of-553.37 and-1331.20 kJ·mol-1for B3LYP and MP2,respectively.

Lithium ion battery;Overcharge protection additive;1,4-Dimethoxy benzene; Reaction mechanism;Density functional theory

10.3866/PKU.WHXB201201132

O646

?Corresponding author.Email:liwsh@scnu.edu.cn;Tel/Fax:+86-20-39310256.

The project was supported by the Joint Project of National Natural Science Foundation of China and Natural Science Foundation of Guangdong Province(U1134002)and Natural Science Foundation of Guangdong Province,China(10351063101000001).

國(guó)家自然科學(xué)基金-廣東省人民政府自然科學(xué)聯(lián)合基金(U1134002)和廣東省自然科學(xué)基金(10351063101000001)資助項(xiàng)目

主站蜘蛛池模板: 亚洲国产AV无码综合原创| 精品少妇人妻无码久久| 亚洲欧洲日产无码AV| 无码精品一区二区久久久| 亚洲色图综合在线| 欧美亚洲一二三区| 国产成人免费视频精品一区二区| 六月婷婷激情综合| 91一级片| 亚洲无线国产观看| 亚洲美女一级毛片| 极品av一区二区| 色哟哟国产精品| 欧美精品亚洲精品日韩专区| 亚洲69视频| 欧美视频在线第一页| 婷婷亚洲天堂| 亚洲浓毛av| 国产毛片久久国产| jizz在线观看| 久久亚洲精少妇毛片午夜无码| 国产h视频免费观看| 亚洲一区毛片| 亚洲精品福利视频| 成人小视频网| 亚洲精品国产成人7777| 国产产在线精品亚洲aavv| 亚洲色精品国产一区二区三区| 国产精品午夜电影| www亚洲精品| 亚洲色图另类| 欧美色图久久| 国产喷水视频| 国产超薄肉色丝袜网站| 欧美午夜视频在线| 亚洲综合在线最大成人| 一级毛片a女人刺激视频免费| 视频一本大道香蕉久在线播放| www.91中文字幕| 国产在线观看精品| 亚洲天堂网在线播放| 美女潮喷出白浆在线观看视频| 日韩精品视频久久| 日本一区高清| 亚洲日韩Av中文字幕无码| 午夜免费视频网站| 久久久91人妻无码精品蜜桃HD| 亚洲人成成无码网WWW| jizz在线观看| 在线观看亚洲精品福利片| 国产精品尤物在线| 欧亚日韩Av| 老司国产精品视频| 国产亚洲精| 日韩中文无码av超清| 乱人伦视频中文字幕在线| 人妻精品久久久无码区色视| 亚洲人成人伊人成综合网无码| 久久亚洲天堂| 欧美无专区| 久久成人免费| 亚洲永久色| 国产成人艳妇AA视频在线| 精品少妇三级亚洲| 国产久草视频| 国内精品伊人久久久久7777人| 天堂网亚洲系列亚洲系列| 久久99国产综合精品1| 国产美女免费网站| 免费国产一级 片内射老| 中文字幕在线视频免费| 欧美成人午夜在线全部免费| 欧美亚洲欧美区| 欧美成人精品在线| 国产尤物在线播放| 成人韩免费网站| 久久国产亚洲偷自| 午夜视频在线观看免费网站 | 国产超碰一区二区三区| 永久免费无码日韩视频| 欧美日韩午夜| 黄色在线不卡|