999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于鋁離子摻雜二氧化鈦薄膜的染料敏化太陽能電池的光電性能

2012-11-30 10:33:42劉秋平黃慧娟段彥棟孫慶文
物理化學學報 2012年3期
關鍵詞:實驗室

劉秋平 黃慧娟 周 洋 段彥棟 孫慶文 林 原,*

(1北京交通大學機械與電子控制工程學院,北京100044;2江西理工大學軟件學院,南昌330013;3中國科學院化學研究所光化學重點實驗室,北京分子科學國家實驗室,北京100190;4九江職業技術學院,江西九江332000)

基于鋁離子摻雜二氧化鈦薄膜的染料敏化太陽能電池的光電性能

劉秋平1,2,3黃慧娟4周 洋1,*段彥棟3孫慶文3林 原3,*

(1北京交通大學機械與電子控制工程學院,北京100044;2江西理工大學軟件學院,南昌330013;3中國科學院化學研究所光化學重點實驗室,北京分子科學國家實驗室,北京100190;4九江職業技術學院,江西九江332000)

采用水熱法制備出Al3+摻雜二氧化鈦薄膜,通過玻璃棒涂于導電玻璃上,在450°C的溫度下燒結并將其用N3染料敏化制成染料敏化太陽能電池(DSSCs).通過X射線光電子能譜(XPS)、X射線衍射(XRD)、掃描電鏡(SEM)及DSSCs測試系統對其進行了測試表征,研究了Al3+摻雜對TiO2晶型及染料敏化太陽能電池的光電性能影響.XPS數據顯示Al3+成功摻雜到了TiO2晶格內,由于Al3+的存在,對半導體內電子和空穴的捕獲及阻止電子/空穴對的復合發揮重要作用.莫特-肖特基曲線顯示摻雜Al3+后二氧化鈦平帶電位發生正移,并導致電子從染料注入到TiO2的驅動力提高.DSSCs系統測試結果表明,Al3+摻雜的TiO2薄膜光電效率達到6.48%,相對于無摻雜的純二氧化鈦薄膜光電效率(5.58%),其光電效率提高了16.1%,短路光電流密度從16.5 mA·cm-2提高到18.2 mA·cm-2.

二氧化鈦;鋁摻雜薄膜;水熱法;X射線光電子能譜;光電性能;平帶電位

1 Introduction

Doped TiO2nanomaterials have been investigated for more than ten years.1-6Doping a metal or nonmetal into TiO2could change the band edge or surface states of TiO2.7Until now, most of the doping for TiO2nanomaterial has been explored for photocatalysis.To the best of our knowledge,there are only a few papers reported in which doped TiO2nanomaterials were used as photoanodes in the dye-sensitized solar cells(DSSCs) (including nitrogen-doped TiO2).8,9For the metal-doped TiO2nanomatrials,Cr-doped,10Yb-doped,8Zn-doped,11and Aldoped12TiO2have been attempted to be applied as the photoanodes of DSSCs.The doping effects,however,do not seem so pronounced by comparison to the corresponding undoped TiO2photoanode.The energy conversion efficiency remained either unchanged or a little improvement.

Here,we report our investigation of introducing Al into TiO2nanocrystals and the fabrication of DSSCs with TiO2photoanodes prepared using Al-doped TiO2nanocrystals.We will study the shift of flat band potential of the TiO2photoanode by doping Al with the method of Mott-Schottky plots and further study electron transport properties by intensity-modulated photocurrent spectroscopy.Above all,we will explore the impact ofAl-doped TiO2on the conversion efficiency of DSSCs.

2 Experimental

2.1 Preparation of Al-doped TiO2and undoped TiO2

Tetrabutyl titanate,butanol,and acetic acid were used without further purification.Distilled water was used with further purification.Al(NO3)3·9H2O and methanol were obtained from Beijing Chemical Reagent Plant.All reagents used were analytical pure.

Both undoped and Al-doped TiO2were synthesized by the hydrothermal method.Tetrabutyl titanate(5 mL),butanol(30 mL),acetone(5 mL),and acetic acid(5 mL)were mixed.A mixture of butanol(20 mL)and distilled water(2 mL)was then added into the above solution.After stirring continuously for 1 h,the mixture was transferred into an autoclave for the hydrothermal process at 240°C for 6 h.After cooling to room temperature,the concentrated colloid contained 11%(molar fraction)TiO2.For the case of the Al-doped sample,Al(NO3)3· 9H2O was added into the tetrabutyl titanate(molar ratio of Al and Ti is 1:100)to start the hydrolysis reaction.The obtained sample was denoted asAl-doped TiO2.

2.2 Fabrication of DSSC based on the Al-doped TiO2and undoped TiO2

To prepare the working electrode,a TiO2or Al-doped TiO2slurry was coated onto the fluorine-doped tin oxide glass substrate(FTO,20 Ω·□-1,Hake New Energy Co.Ltd.Harbin)by the doctor blade method,and was then sintered at 450°C for 30 min.Working electrodes with a 2-μm TiO2layer or 2-μm Al-doped TiO2layer were used to test intensity-modulated photocurrent spectroscopy(IMPS)and Mott-Schottky analysis.To fabricate the DSSCs,we used a double-layer structure electrode.A 2-μm thick film of TiO2was first coated onto the FTO and then further coated by an 8-μm thick second layer of Aldoped TiO2.This double-layer structure can retard the electron recombination occurring in the double-layer region.13After cooling to 80°C,the TiO2electrode was immersed into an absolute ethanolic solution of the N3 dye(cis-di(thiocyanato)-N,N-bis(2,2-bipyridyl)-4,4-dicarboxylicacid ruthenium(III))complex for 12 h.The electrolyte was composed of 0.05 mol·L-1iodine(I2),0.5 mol·L-1lithium iodide(LiI),and 0.05 mol·L-1tert-butylpyridine dissolved in 3-methoxypropionitrile.A platinized counter electrode was clipped onto the top of the TiO2electrode to form the test cell.

2.3 Characterization and instruments

X-ray photoelectron spectroscopy data were obtained with an ESCALab220i-XL electron spectrometer(VG Scientific, USA)using 300 W Al Kαradiation.A TR200 was used to measure the film thickness.The XRD patterns of samples were recorded at 40 kV on a Rigaku D/max 2500(Japan)using Cu Kαirradiation.The morphology was examined by scanning electron microscopy(SEM,S-4800,HITACHI,Japan,15 kV).

Mott-Schottky analysis was performed in a three-electrode cell in the dark.TiO2or Al-doped TiO2single film(ca 2 μm) without dyes was used as the electrode,a saturated calomel electrode(SCE)was served as the reference electrode,and platinum wire was used as the counter electrode.The active area was 0.25 cm2.The electrolyte was prepared by dissolving 0.01 mol·L-1I2and 0.1 mol·L-1potassium iodide(KI)in ethylene carbonate and propylene carbonate(1:1 volume ratio).UV-Vis absorption data were measured on a Model U-3010 spectrophotometer(HITACHI,Japan)with an integrating sphere.TiO2or Al-doped TiO2single film(ca 2 μm)adsorbed by dyes was used for the IMPS test.IMPS was performed using a green light emitting diode(λmax=520 nm)driven by a solartron 1255B frequency-response analyzer.The light-emitting diode(LED) provided both the dc and ac components of the illumination. Photoelectrochemical measurements were recorded with a Princeton Applied Research(PAR)potentiostat(Model273)under a light intensity of 100 mW·cm-2at AM1.5 provided by a solar light simulator(Oriel,91160-1000).The active area was 0.2 cm2.

3 Results and discussion

3.1 Characterization of TiO2and Al-doped TiO2

X-ray photoelectron spectroscopy was used to investigate the chemical composition and electronic structure of the Al-doped TiO2.Fig.1a shows the typical full XPS spectrum of Al-doped TiO2.The film is mainly composed of Ti,O,and Al. XPS data indicate that the atomic fraction ratio of Al:Ti is 2.96: 22.72.The photoelectron peak of Al 2p(74.4 eV)can be observed in Fig.1b and indicates the presence of Al3+in the sample.It is clear that Al ions are implanted successfully into the TiO2.

The crystallinity of the Al-doped TiO2film was determined using X-ray diffraction analysis(40 kV on a Rigaku D/max 2500),the XRD patterns of the TiO2and Al-doped TiO2samples sintered at 450°C are shown in Fig.2.The XRD results also indicate that no second phase is detected in both undoped TiO2and Al-doped TiO2films.The structure of the TiO2film did not change much,which confirmed again that the Al3+ions must have been doped into the TiO2lattice successfully.The nanostructures of the porous films were obtained from the SEM image shown in Fig.3.The Al-doped TiO2and pure TiO2samples exhibit uniform porous morphologies.

3.2 Band structure analysis

Fig.1 XPS survey spectra ofAl-doped TiO2(a)andAl 2p(b)

Fig.2 XRD patterns of TiO2andAl-doped TiO2samples

Mott-Schottky analysis is a common tool used to investigate the semiconductor/electrolyte interface.14,15The space charge layer capacitance(Csc)is related to the electron density(ND) and the flat band potential(Efb)of the semiconductor using the Mott-Schottky equation:16where A is the active surface,ε is the relative dielectric constant,taken approximately as 55 for anatase TiO2film,14E is the electrode potential,k is the Boltzmann constant,and T is the absolute temperature.The flat band potential and electron density of the electrode can be calculated from the intercept and slope,respectively.Fig.4 presents typical Mott-Schottky plots for the TiO2and Al-doped TiO2thin film electrodes in the high frequency ranging from 1 to 105Hz.The Efbof the pure TiO2electrode is about-0.7 V(vs SCE),whereas the Efbof the Al-doped TiO2electrode is about-0.5 V(vs SCE).

Fig.3 SEM images of TiO2(a)andAl-doped TiO2(b)samples

Fig.4 Mott-Schottky plots for TiO2andAl-doped TiO2

The increase of the Efbincreases the energy gap between the LUMO of dye and conduction band of TiO2,which results in an increased injection driving force of electrons and then improves the electron injection efficiency from the LUMO of the dye to the TiO2conduction band.The estimated value of the electron density NDof Al-doped TiO2is 1.79×1019cm-3,which is higher than that for TiO2(1.56×1018cm-3).The increase of NDoriginated mainly from doping with Al,indicating that less charge transfer occurred and it impeded the charge transfer more effectively than the latter.The UV-Vis absorption spectra of the films are shown in Fig.5.As reported,11the UV absorption of the films can be assigned to the absorption caused by the excitation of electrons from the band to band or band defect transitions.Comparing the variation in the optical absorption behavior of Al-doped TiO2and TiO2films without N3 dye, both the films exhibit maximum absorption peak at 360 nm. From the curve,it can be seen that the pure TiO2film shows a weak absorption in the region,and has an absorption onset at 390 nm.By doping with the Al,the as-formed films have a red-shift absorption.

3.3 Effect of the charge transport

Intensity modulated photocurrent spectroscopy is a useful method to study charge transport.Fig.6 shows a complex plane plot of the IMPS spectrum for the TiO2and Al-doped TiO2thin films.The response appears in the fourth quadrant of the complex plane and displays one semicircle,i.e.,it is a single time constant process in IMPS measurements where the frequency at the apex of the semicircle is related to the time constant of the process.

Fig.5 UV-Vis absorption spectra for the pure TiO2and the Al-doped TiO2films

Fig.6 Complex plane plots of the TiO2and theAl-doped TiO2 cells obtained from IMPS measurements

The time constant(electron transit time)can be estimated from τD=(2πfmax)-1,where fmaxis the minimum characteristic frequency of the IMPS at the imaginary plots,which gives an estimate of the average time that photoinjected electrons need to reach the back contact.For films with comparable film thickness and dye loading,such as those investigated here,the electron transit time should enable a valid comparison of the electron transport in the films.17-19The electron transit time for the Al-doped TiO2and TiO2electrodes is 4.01 and 7.14 ms,respectively.From the measured τDvalue,one can estimate that the electron transport properties of the Al-doped TiO2thin films are different from those of the TiO2thin films.The fast electron transport in the Al-doped TiO2film is quite remarkable. Fast electron transport can improve charge-collection efficiency and thus increase photocurrent density.The reason that the Al-doped TiO2thin film has faster electron transport in the film may be related to the increased electron density.

3.4 Photovoltaic performance

The photocurrent density-voltage curves of the DSSCs based on the TiO2and Al-doped TiO2films are shown in Fig.7.The photovoltaic parameters are summarized in Table 1.Under light intensity of 100 mW·cm-2atAM1.5,the short-circuit photocurrent densities of TiO2andAl-doped TiO2films are 16.5 and 18.2 mA·cm-2,with Vocvalues of 605 and 575 mV and FF values of 0.61 and 0.59,respectively.A photovoltaic efficiency of 6.48%for Al-doped TiO2thin film is obtained,which is higher than the undoped TiO2thin film.

Fig.7 Photocurrent density-voltage curves of DSSCs based on TiO2andAl-doped TiO2photoanodes underAM1.5 illumination

Table 1 Photovoltaic characteristics of the DSSCs based on TiO2 andAl-doped TiO2photoanodes

The dye-loading amount is similar for both of the films,indicating that the enhancement of photocurrent for Al-doped TiO2is not due to the increase of the dye adsorption.Therefore,the enhanced efficiency is mainly ascribed to the increased Jsc, which is improved by 10.3%from 16.5 to 18.2 mA·cm-2.The increased Jscis due to competitive reactions including:(1)the injection must be faster than the relaxation of the excited state of the sensitizer dye;and(2)the transport of electrons must be faster than the reaction with molecules in the solution.The more positive flat band potential of the Al-doped TiO2is the result of the effective driving force for the photoelectron,which can lead to a larger electron injection efficiency from the LUMO of dye into the conduction band of the semiconductor.The NDof Al-doped TiO2is higher than that of TiO2.The result of the IMPS gives the exact values of the electron transit time of Al-doped TiO2(4.01 ms)and TiO2(7.14 ms).Therefore,it favors charge transport in Al-doped TiO2film.Doping can create a donor level,which increases the concentration of the carriers and reduces the film resistance.20-25

4 Conclusions

Al-doped TiO2film was prepared by the hydrothermal method to construct a DSSC.The present results demonstrate the improvement in the photoelectric performance of DSSC by introducing the Al3+ions into the TiO2films.Experimental results showed that Al-doped TiO2films resulted in flat band potential to shift positively by-0.2 compared with the undoped TiO2. The supplementary charge incorporated in the doped TiO2with Al3+ions was found to increase the concentration of carriers.Both the positive shift of flat band potential and the faster charge transport produce an increase of Jscby up to 1.7 mA· cm-2for DSSC.The photovoltaic efficiency of DSSC based on Al-doped TiO2thin film reaches 6.48%,which is improved by 16.1%.This finding shows the feasibility of TiO2with Al-doping in a dye-sensitized solar cell and provides an effective way to improve the Jscfor solar cells.

(1) Choi,W.;Termin,A.;Hoffmann,M.J.Phys.Chem.1994,98, 13669.

(2)Asahi,R.;Morikawa,T.;Ohwaki,T.;Aoki,K.;Taga,Y.Science 2001,293,269.

(3) Ishii,T.;Kato,H.;Kudo,A.J.Photochem.Photobiol.A:Chem. 2004,163,181.

(4) O?Regan,B.;Gr?tzel,M.Nature 1991,353,737.

(5) Hagfeldt,A.;Boschloo,G.;Sun,L.;Kloo,L.;Pettersson,H. Chem.Rev.2010,110,6595.

(6)Wang,Z.S.;Yanagida,M.;Sayama,K.;Sugihara,H.Chem. Mater.2006,18,2912.

(7) Imahori,H.;Hayashi,S.;Umeyama,T.;Eu,S.;Oguro,A.; Kang,S.;Matano,Y.;Shishido,T.;Ngamsinlapasathian,S.; Yoshikawa,S.Langmuir 2006,22,11405.

(8) Ma,T.;Akiyama,M.;Abe,E.;Imai,I.Nano Lett.2005,5,2543.

(9) Tian,H.;Hu,L.;Zhang,C.;Liu,W.;Huang,Y.;Mo,L.;Guo, L.;Sheng,J.;Dai,S.J.Phys.Chem.B 2010,114,1627.

(10)Kim,C.;Kim,K.;Kim,H.;Han,Y.J.Mater.Chem.2008,18, 5809.

(11) Xu,W.;Dai,S.;Hu,L.;Liang,L.;Wang,K.Phys.Lett.2006, 23,2288.

(12) Ko,K.H.;Lee,Y.C.;Jung,Y.J.J.Colloid Interface Sci.2005, 283,482.

(13)Wang,K.P.;Teng,H.Phys.Chem.Chem.Phys.2009,11,9489.

(14) Krol,R.;Goossens,A.;Schoonman,J.J.Electrochem.Soc. 1997,14,1723.

(15) Liu,B.S.;Zhao,X.J.Surf.Sci.2005,595,203.

(16) Randeniya,L.K.;Bendavid,A.;Martin,P.J.;Preston,E.W. J.Phys.Chem.C 2007,111,18334.

(17) Zhu,K.;Neale,N.;Miedaner,A.;Frank,J.Nano Lett.2007,7, 69.

(18) Zhang,D.;Toshida,T.;Oekermann,T.;Furuta,K.;Minoura,H. Adv.Funct.Mater.2006,16,1228.

(19) Baiju,K.;Shajush,P.;Wunderlich,W.;Mukundan,P.;Kumar, S.;Warrier,K.J.Mol.Catal.A:Chem.2007,276,41.

(20) Furubayashi,Y.;Hitosugi,T.;Yamamoto,Y.;Inaba,K.;Kinoda, G.;Hirose,Y.;Shimada,T.;Hasegawa,T.Appl.Phys.Lett. 2005,86,252101.

(21) Shi,J.F.;Xu,G.;Miao,L.;Xu,X.Q.Acta Phys.-Chim.Sin. 2011,27,1287.[史繼富,徐 剛,苗 蕾,徐雪青.物理化學學報,2011,27,1287.]

(22) Li,J.;Kong,F.T.;Wu,G.H.;Zhang,C.N.;Dai,S.Y.Acta Phys.-Chim.Sin.2011,27,881. [李 潔,孔凡太,武國華,張昌能,戴松元.物理化學學報,2011,27,881.]

(23) Lu,X.;Mou,X.;Wu,J.;Zhang,D.;Zhang,L.;Huang,F.;Fu, F.;Huang,S.Adv.Funct.Mater.2010,20,509.

(24) Feng,X.;Shankar,K.;Paulose,M.;Grimes,C.Angew.Chem. Int.Edit.2009,48,8095.

(25) Henglein,A.Chem.Rev.1989,89,1861.

October 26,2011;Revised:December 13,2011;Published on Web:December 16,2011.

Photovoltaic Performance of Dye-Sensitized Solar Cells Based on Al-Doped TiO2Thin Films

LIU Qiu-Ping1,2,3HUANG Hui-Juan4ZHOU Yang1,*DUAN Yan-Dong3SUN Qing-Wen3LIN Yuan3,*
(1School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,P.R.China;2College of Software,Jiangxi University of Science and Technology,Nanchang 330013,P.R.China;3Beijing National Laboratory for Molecular Sciences,Key Laboratory of Photochemistry,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190, P.R.China;4Jiujiang Vocational&Technical College,Jiujing 332000,Jiangxi Province,P.R.China)

Al-doped TiO2thin films were synthesized by the hydrothermal method.To prepare a working electrode,a TiO2or AlTiO2slurry was coated onto a fluorine-doped tin oxide glass substrate by the doctor blade method and the coated substrate was sintered at 450°C.TiO2and Al-doped TiO2films were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),and tested by the dye-sensitized solar cell(DSSCs)system.The influences of Al-doping on TiO2crystal form and the photovoltaic performance of DSSCs were investigated.X-ray photoelectron spectroscopy(XPS)data indicate that the doped Al ions exist in the form of Al3+,and these ions play a role as e-or h+traps and reduce the e-/h+pair recombination rate.The corresponding Mott-Schottky plot indicates that the Al-doped TiO2photoanode shifts the flat band potential positively.The positive shift of the flat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2.The Al-doped TiO2thin film shows a photovoltaic efficiency of 6.48%, which is higher than that of the undoped TiO2thin film(5.58%)and the short-circuit photocurrent density increases from 16.5 to 18.2 mA·cm-2.

Titanium dioxide;Al-doped film;Hydrothermal method;X-ray photoelectron spectroscopy;Photovoltaic performance;Flat band potential

10.3866/PKU.WHXB201112161

O646

?Corresponding authors.ZHOU Yang,Email:Yzhou@bjtu.edu.cn;Tel:+86-10-51685554.LIN Yuan,Email:liuyuan@iccas.ac.cn;

Tel:+86-10-82615031.

The project was supported by the National Key Basic Research Program of China(973)(2006CB202605),National High-Tech Research and Development Program of China(863)(2007AA05Z439),and National Natural Science Foundation of China(20973183).

國家重點基礎研究發展規劃項目(973)(2006CB202605),國家高技術研究發展計劃項目(863)(2007AA05Z439)及國家自然科學基金項目(20973183)資助

猜你喜歡
實驗室
電競實驗室
電子競技(2020年8期)2020-12-23 04:09:40
電競實驗室
電子競技(2020年7期)2020-10-12 10:45:48
電競實驗室
電子競技(2020年5期)2020-08-10 08:43:10
電競實驗室
電子競技(2020年4期)2020-07-13 09:18:06
電競實驗室
電子競技(2020年2期)2020-04-14 04:40:38
電競實驗室
電子競技(2020年11期)2020-02-07 02:49:36
電競實驗室
電子競技(2020年9期)2020-01-11 01:06:21
電競實驗室
電子競技(2020年10期)2020-01-11 01:06:06
電競實驗室
電子競技(2019年22期)2019-03-07 05:17:26
電競實驗室
電子競技(2019年21期)2019-02-24 06:55:52
主站蜘蛛池模板: 亚洲AV无码乱码在线观看代蜜桃| 亚洲Aⅴ无码专区在线观看q| 亚洲无线视频| 一级毛片免费观看久| 亚洲天堂日韩在线| 毛片三级在线观看| 精品综合久久久久久97| 国产欧美日韩另类精彩视频| 精品无码一区二区三区在线视频| 亚洲综合香蕉| 国产亚洲精品自在久久不卡| 免费观看国产小粉嫩喷水| 伊人无码视屏| 日韩中文无码av超清| 国产草草影院18成年视频| 亚洲欧洲日产无码AV| 日韩小视频在线播放| 91口爆吞精国产对白第三集| 国产成人综合在线视频| 国产日韩欧美中文| 成人国产精品2021| 午夜天堂视频| 天堂va亚洲va欧美va国产| 国产激情无码一区二区免费| 国产一区成人| 亚洲无码高清视频在线观看| 国产高清又黄又嫩的免费视频网站| 99这里精品| 欧美精品伊人久久| 欧美成人怡春院在线激情| 波多野衣结在线精品二区| 国产在线无码av完整版在线观看| 一本一道波多野结衣av黑人在线| 无码人中文字幕| 国产呦视频免费视频在线观看| 综合色在线| 成人免费视频一区| 成人午夜免费观看| 色成人综合| 国产h视频免费观看| 亚洲区视频在线观看| 日本免费新一区视频| 手机在线国产精品| 国产高清不卡视频| 亚洲性网站| 日韩性网站| 欧美一级高清片欧美国产欧美| 国产精品无码制服丝袜| 中文字幕无码电影| 国产精品视频a| 中文字幕欧美日韩| 亚洲午夜福利精品无码| 国产成年女人特黄特色毛片免| 日韩成人在线网站| 乱色熟女综合一区二区| 麻豆国产精品一二三在线观看| 国产女人综合久久精品视| 青青青亚洲精品国产| 久久夜夜视频| 国产午夜无码片在线观看网站| 国产综合在线观看视频| 97在线公开视频| 色婷婷成人网| 亚洲精品久综合蜜| 国产区免费精品视频| 欧美人人干| 久久久久久高潮白浆| 国产黄色视频综合| 粉嫩国产白浆在线观看| 丰满人妻中出白浆| 国产麻豆另类AV| 国产迷奸在线看| 九九热这里只有国产精品| 欧美日韩国产在线播放| 欧美精品成人一区二区在线观看| 国模粉嫩小泬视频在线观看| 亚洲精品你懂的| аⅴ资源中文在线天堂| 国产99欧美精品久久精品久久| 乱人伦中文视频在线观看免费| 亚洲国产日韩在线成人蜜芽| 日日拍夜夜操|