王亦恩,沈火明
(西南交通大學(xué)力學(xué)與工程學(xué)院,四川成都610031)
混凝土構(gòu)件是工程實(shí)際中最常用的一種構(gòu)件,其正截面承載力計(jì)算可分為軸心受力構(gòu)件、受彎構(gòu)件及偏心受力構(gòu)件。本文所研究的是工程中大量碰到的受彎構(gòu)件,如樓面、橋面的梁板結(jié)構(gòu)等都屬于受彎構(gòu)件。
正截面強(qiáng)度計(jì)算的發(fā)展經(jīng)歷了容許應(yīng)力的設(shè)計(jì)理論、破損階段理論和極限狀態(tài)理論三個(gè)階段。目前我國(guó)規(guī)范采用的是已為國(guó)際上所公認(rèn)的極限狀態(tài),用概率論的觀點(diǎn)來(lái)研究結(jié)構(gòu)或者構(gòu)件的失效概率?;炷潦軓潣?gòu)件正截面承載力計(jì)算采用的是承載力極限狀態(tài)設(shè)計(jì)法,結(jié)構(gòu)或構(gòu)件的作用效應(yīng)要小于或等于結(jié)構(gòu)(或構(gòu)件)的抗力,從而使結(jié)構(gòu)或構(gòu)件能正常工作滿足使用要求[1]。
本文在極限狀態(tài)理論的基礎(chǔ)上,以單筋矩形截面為例對(duì)梁的正截面抗彎強(qiáng)度的影響因素進(jìn)行深入探討。
選定一個(gè)混凝土受彎構(gòu)件為分析模型,每次只改變一種影響因素而保持混凝土構(gòu)件的其它影響因素不變。采用這種方法討論相關(guān)參數(shù)對(duì)該受彎構(gòu)件的抗彎承載能力的影響,并進(jìn)行分析。算例中的有關(guān)參量值的選取,盡量滿足構(gòu)件設(shè)計(jì)的一般要求。
鋼筋混凝土矩形截面示意圖如圖1所示。相關(guān)參數(shù)有:


圖1 矩形截面參數(shù)
圖2是混凝土本構(gòu)關(guān)系對(duì)構(gòu)件抗彎承載力和影響分析圖。

圖2 混凝土本構(gòu)關(guān)系對(duì)構(gòu)件抗彎承載力和影響分析
由圖2可以看出,混凝土本構(gòu)模型對(duì)構(gòu)件抗彎承載力的影響不大。對(duì)應(yīng)于0.0038的混凝土邊緣纖維極限應(yīng)變,Hognestad模型得到的極限承載彎矩為120.15 kN·m,Rusch模型得到的極限承載彎矩為122.75 kN·m,二者相對(duì)誤差2.12%。
采用Hognestad模型,分別增加b,h的大小,改變截面尺寸。計(jì)算結(jié)果如圖3、圖4所示。

圖3 截面高度h對(duì)抗彎承載力M的影響
由圖3可知截面高度與抗彎承載力呈線性變化關(guān)系,截面高度增大一倍,抗彎承載力增大約2.47倍。這是因?yàn)樵黾咏孛娓叨葘⒂行г黾觾?nèi)力臂的長(zhǎng)度,從而大幅增加極限承載彎矩。由圖4可知:增加截面寬度也能提高極限承載彎矩,但增幅較慢,截面寬度由200 mm增至400 mm,抗彎承載力僅增加了15.6%。

圖4 截面高度b對(duì)M的影響
配筋的影響體現(xiàn)在所配鋼筋的強(qiáng)度用鋼筋數(shù)量上,二者是等效的。本文選用修改所使用鋼筋的面積進(jìn)行比較,計(jì)算結(jié)果如圖5所示。

圖5 配筋對(duì)截面極限承載彎矩的影響
由圖5可知,初步提高配筋面積,在超筋之前可以提高極限承載彎矩,配筋面積由1 473 mm2增至2 473 mm2,配筋率增大1.6倍時(shí),抗彎承載力增大21.5%,增幅不大。原因在于受壓區(qū)高度增加,內(nèi)力臂同時(shí)減小。同時(shí)還可以觀察到,若一直增加配筋面積以致超筋,則無(wú)益于提高極限承載彎矩,這是因?yàn)榛炷翉?qiáng)度及截面面積將不能平衡鋼筋對(duì)截面產(chǎn)生的拉力。
圖6、圖7分別是低配筋率和高配筋率時(shí)極限應(yīng)變對(duì)構(gòu)件抗彎承載力和彎矩的影響關(guān)系線。

圖6 低配筋率時(shí)極限應(yīng)變對(duì)構(gòu)件抗彎承載彎矩M的影響(As=1473)

圖7 高配筋率時(shí)極限應(yīng)變對(duì)構(gòu)件抗彎承載彎矩M的影響(As=3403)
由圖6可知:在低配筋率(ρ=0.0206)時(shí)混凝土極限破壞狀態(tài)所對(duì)應(yīng)的極限應(yīng)變的選取對(duì)構(gòu)件抗彎承載力的影響不大,增幅0.01%左右。而由圖7知高配筋率(ρ=0.0477)時(shí),較大極限應(yīng)變則對(duì)應(yīng)著較大的抗彎強(qiáng)度,比如極限應(yīng)變由0.0031變至0.0034時(shí),抗彎承載力的相對(duì)增幅達(dá)到2.29%。這是因?yàn)樵诟吲浣盥是闆r下,可以充分發(fā)揮混凝土的抗壓能力。我國(guó)規(guī)范采用的是混凝土極限壓應(yīng)變?yōu)?.0033。
本文對(duì)混凝土強(qiáng)度的影響將分兩種情況討論,一是在適筋情況下,一是在超筋情況下即鋼筋由較多儲(chǔ)備承載力時(shí)。分析結(jié)果如圖8和圖9所示。

圖8 低配筋時(shí)混凝土強(qiáng)度對(duì)構(gòu)件抗彎承載彎矩M的影響

圖9 高配筋時(shí)混凝土強(qiáng)度對(duì)構(gòu)件抗彎承載彎矩M的影響
由圖8和圖9可知:在低配筋率(ρ=0.0206)情況下,提高混凝土強(qiáng)度對(duì)提高截面抗彎能力沒(méi)有較大的提高(C30至C50提高了134.4-120.1=14.3 kN·m,增幅 11.89%),而在超筋情況下(ρ=0.0477),因?yàn)殇摻钣休^大的儲(chǔ)備能力,能夠有效地增加混凝土受壓區(qū)的壓力,故較大幅度提高了截面抗彎能力(C30至C50提高了199.2-145.9=54.3 kN·m,增幅36.52%)。
本文對(duì)可能影響構(gòu)件極限承載彎矩的相關(guān)因素進(jìn)行了對(duì)比分析。通過(guò)計(jì)算與分析得到如下結(jié)論。
(1)混凝土受壓應(yīng)力-應(yīng)變曲線模型對(duì)截面承載能力大小有影響,采用Rusch計(jì)算模型將會(huì)過(guò)大估計(jì)截面抗彎強(qiáng)度,即人為的增大了其抗彎承載力,對(duì)于工程設(shè)計(jì)而言偏于不安全。
(2)增大構(gòu)件的截面尺寸有利于提高構(gòu)件的抗彎強(qiáng)度承載力,但效果不明顯??傮w而言,增大構(gòu)件截面的高度要比增大寬度效果更為顯著。
(3)增大混凝土強(qiáng)度可以提高受彎構(gòu)件的抗彎承載力。其影響效果和配筋率、鋼筋強(qiáng)度以及混凝土強(qiáng)度存在一定的關(guān)系。
(4)增大配筋率可以顯著提高提高受彎構(gòu)件的抗彎承載力。由于其影響作用明顯,所以工程中常采用增大配筋率來(lái)提高,但是,前提是不能發(fā)生超筋破壞。其提高程度的大小與混凝土及鋼筋的強(qiáng)度高低有關(guān),因此,在實(shí)際的工程中應(yīng)合理地選取混凝土及鋼筋的級(jí)別,以求達(dá)到最佳的設(shè)計(jì)效果。
[1]胡其強(qiáng),林擁軍.混凝土受彎構(gòu)件正截面承載力影響因素分析[J].四川建筑,2010(4)
[2]陳升平,江小川.高性能纖維增強(qiáng)混凝土受彎構(gòu)件承載力[J].湖北工業(yè)大學(xué)學(xué)報(bào),2010(10)
[3]趙國(guó)藩.高等鋼筋混凝土結(jié)構(gòu)學(xué)[M].北京.機(jī)械工業(yè)出版社,1998
[4]滕智明.混凝土結(jié)構(gòu)及砌體結(jié)構(gòu)[M].北京.中國(guó)建筑工業(yè)出版社,2006