999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

三缺位Keggin結(jié)構(gòu)磷鎢酸甲基苯基硅衍生物[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3]的合成和表征

2012-09-18 06:31:14張東娣王科燕慶霞馬鵬濤王敬平
關(guān)鍵詞:結(jié)構(gòu)

張東娣王 科燕慶霞馬鵬濤王敬平*,

(1河南大學(xué)藥學(xué)院,開(kāi)封 475004)

(2河南大學(xué)化學(xué)化工學(xué)院分子與晶體工程研究所,開(kāi)封 475004)

三缺位Keggin結(jié)構(gòu)磷鎢酸甲基苯基硅衍生物[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3]的合成和表征

張東娣1,2王 科2燕慶霞2馬鵬濤2王敬平*,2

(1河南大學(xué)藥學(xué)院,開(kāi)封 475004)

(2河南大學(xué)化學(xué)化工學(xué)院分子與晶體工程研究所,開(kāi)封 475004)

通過(guò)三缺位Keggin結(jié)構(gòu)雜多陰離子[α-A-PW9O34]9-和二氯甲基苯基硅烷在乙腈溶液中反應(yīng),合成了一例結(jié)構(gòu)新穎的甲基苯基硅衍生物[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3](1),并對(duì)其進(jìn)行元素分析,紅外光譜,紫外光譜,熱分析和X-射線單晶衍射等表征。該配合物屬于三方晶系,空間群為 R3m,晶胞參數(shù):a=2.261 3(2)nm,b=2.261 3(2)nm,c=1.797 6(4)nm,V=7.960 2(18)nm3,Z=3。在配合物中,陰離子[α-A-PW9O34(C6H5SiCH3)3]3-呈C3v對(duì)稱,3個(gè)甲基苯基硅基團(tuán)連接在三缺位的陰離子[α-A-PW9O34]9-表面,整個(gè)陰離子顯示“開(kāi)放結(jié)構(gòu)”。

有機(jī)硅;三缺位磷鎢酸鹽;晶體結(jié)構(gòu);合成

The design and synthesis of derivatized polyoxometalates (POMs)have attracted considerable attention in recent years originating from the fundamental interest of modeling catalysis by metal oxides as well as potential applications in different fields,including bifunctional catalysis, antiviral and antitumoral chemotherapy[1-2].It is known that covalent attachment of organic or organometallic groups to POMs can be a strategy for increasing the structural diversity and improving their properties[3-7].This approach has beenvery successful for the synthesis of organic-inorganic hybrid POMs and a large number of such POMs have been synthesized and characterized in solution or in solid state since the pioneering work of Klemperer et al.[8].

To date,there are three main types available in the literature regarding organometallic groups,namely organostannyl derivatives[9-15],organophosphoryl[16-20]and organosilyl derivatives[21-32],also,there are a few of organonoblemetallic derivatives[33-35]reported in the latest years.Among them,organosilyl derivatives are of particular interest and have been investigated for a long time probably because the isolated organosilyl groups can be easily incorporated into mono-,di-,or trivacant POMs.In 1979,the group of Knoth obtained the first organosilyl derivative[α-SiW11O39{O(SiR)2}]4-(R=C2H5,C6H5,NC (CH2)3,C3H5)by reaction of trichloro organosilanes with lacunary precursor[α-SiW11O39]8-[24].In particular,Thouvenot and co-workers studied this system deeply,and have reported a series of orgnosilylderivatives,such as[α2-P2W17O61(RSi)2O]6-[25],[(γ-SiW10O36)(RSi)2O]4-[27],[(γ-SiW10O36)(RSiO)4]4-[27],α-A-[PW9O34(tBuSiO)3(RSi)]3-[28],α-B-[AsW9O33(tBuSiO)3(HSi)]3-[28],[(α-PW10O36)-(tBuSiOH)2]3-[29],and α-A-[PW9O34(tBuSiO)3(SiR)]3-[32].Several years ago we reported on two new monoorganosilyl group-substituted organosilyl derivatives, α-A-[NnBu4]3[PW9O34(RSiO)3(RSi)](R=C2H5,CH3)[30].However,in marked contrast to the extensive reports of monoorganosilyl derivatives aforementioned,few diorganosilylgroup-substituted organosilyl derivatives areknown.Therefore,we decided to investigate the interaction of diorganosilyl groups with trivacant heteropolytungstates in some detail.Herein we report on the synthesis,single-crystal X-ray structure of[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3](1),which represents the first polyoxoanion-based diorganosilyl group-substituted organosilyl derivative.

1 Experimental

1.1 Synthesis of[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3]

Compound 1 can be synthesized as follows:Na9[α-A-PW9O34]·nH2O (1.95 g,0.80 mmol)[36]and NnBu4Br (0.78 g,2.42 mmol)were suspended in 50 mL of CH3CN and then C6H5SiCH3Cl2(0.62 g,3.25 mmol)was added dropwise under vigorous stirring.This solution was refluxed for 24 h and filtered.And then the resulting solution was allowed to evaporate slowly at room temperature.Colorless block crystals of 1 suitable for X-ray crystallography were obtained after several days.Yield:ca.30% (Based on Na9[APW9O34]·nH2O).Anal.Calcd.for C69H132N3O34PSi3W9(%):C,24.98;H,4.01;N,1.27;P,0.93;Si,2.54;W,49.87.Found(%):C,24.88;H,4.00;N,1.10;P,1.01;Si,2.57;W,49.97.

Similar to [α-A-PW9O34(tBuSiO)3(RSi)]3-[28],the formation for 1 can be written as follow:

1.2 X-ray crystallography

Intensity data for 1 were collected at 296 K on a Bruker ApexⅡdiffractometer using the graphitemonochromated Mo Kα radiation (λ=0.071 073 nm).The structure was solved by combination of SHELXS-97 (direct methods)and SHELXH-97 (Fourier and least-squares renement)[37].Lorentz polarization and Muti-scan absorption corrections were applied.All non hydrogen atoms were refined anisotropically.Hydrogen atoms attached to carbon atoms were geometrically placed.All hydrogen atoms were refined isotropically asaridingmodeusingthedefaultSHELXTL parameters.Crystallographic data and structure refinements for 1 are summarized in Table 1.

CCDC:830334.

1.3 Characterization

Elemental analyses(C,H,and N)were performed on a Perkin-Elmer 240C elemental analyzer.ICP analyses were performed on a Perkin-Elmer Optima 2000 ICP-OES spectrometer.IR spectra were obtained on a Nicolet 170 SXFT-IR spectrometer using the technique of pressed KBr pellets in the range 400~4 000 cm-1.XRPD were recorded on a Philips X′Pert-MPD instrument withCu Kα radiation (λ=0.154 056 nm)in the range 2θ=10°~40°at 293 K.TG analyses were carried out under N2atmosphere on a Mettler-Toledo TGA/SDTA 851einstrument with theheating rate of 10℃·min-1from 25 to 800℃.UV-Vis absorption spectra were obtained with a U-4100 spectrometer(distilled water as solvent)at 300 K.

Table 1 Crystallographic data and structural refinements for 1

2 Results and discussion

2.1 Crystal structure

Single crystal X-ray diffraction reveals that 1 crystallizes in the trigonal space group R3m.The molecular structure of 1 is composed of one[α-A-PW9O34(C6H5SiCH3)3]3-polyoxoanions and three [(C4H9)4N]+cations(Fig.1).As shwon in Fig.1a,the polyoxoanion[α-A-PW9O34(C6H5SiCH3)3]3-consists of a[α-A-PW9O34]9-framework with three equivalent C6H5SiCH3groups,and each C6H5SiCH3group isgrafted onto this polyoxoanion by two Si-O-W bridges.Different from the close cage structure of α-A-[NnBu4]3[PW9O34(RSiO)3(RSi)](R=C2H5,CH3)[30],the polyoxoanion[α-A-PW9O34(C6H5SiCH3)3]3-displays an open structure while keeping the geometry of the parent trivacant polyoxoanion[α-A-PW9O34]9-.As we know,the POM-based organosilyl derivatives previously reported are limited and mainly confined to monoorganosilyl group-substituted species.There is still no report about diorganosilyl analogue.Consequently,the most remarkable structural feature of 1 is that it is the first trivacant tungstophosphatebased example ofdiorganosilylgroup-substituted organosilylderivative in which the Siatom is connected to two organic groups.There are minor disorder in the ligand with C2,C3,C4/C4,C5,C6,C7/C7 in 1 which lie about an inversion centre.

Compared to the saturated Keggin structure,the P heteroatom adopts a slightly distorted tetrahedral geometry coordinated by oxygen atomswith an average P-O bond length of 0.153 3(12)nm,which is ascribed to the removal of three corner-shared WO6octahedra and the incorporation of three C6H5SiCH3groups.Fig.1b shows that the incorporated silicon atoms are defined by two O atoms from[α-A-PW9O34]9-moieties with average bond lengths 0.162 6(9)nm and twocarbon atomsfrom themethyland phenyl,respectively.This coordination mode is similar to Sn atoms of[{Sn(CH3)2}4(H2P4W24O92)2]28-[15],Si atoms aswell as Sn atoms are bound to two organic groups.Although there has been such organotin derivative,stillhasno any similarreportforPOM-based diorganosilyl group-substituted organosilyl derivative.To our knowledge,1 is the first example of POM-based diorganosilyl group-substituted organosilyl derivative.Packing arrangement viewed down c axis of the polyoxoanion in 1 is illustrated in Fig.2.The infinite hexa-number rings are formed via π-π and electrostatic interactions with one polyoxoanion locating in the center of the ring.

2.2 FT-IR spectra

The IR spectrum of 1 (Fig.3)is very similar to that of Na9[α-A-PW9O34]·nH2O,which is indicative of the retention of the [α-A-PW9O34]9-framework.In the low-wavenumber region, characteristic vibration patterns derived from the Keggin frameworks are observed.Four characteristic vibration bands assigned to Ⅴ(W-Ot), Ⅴ(P-Oa), Ⅴ(W-Ob)and Ⅴ(W-Oc)appear at 974 and 938,1 088 and 1 028,872,and 812 cm-1for 1,respectively.Additionally,the stretching bands of-CH3and-C6H5have been typically observed at 2 874~2 961 and 3 040~3 072 cm-1,respectively.The bands at wide 3 420 and strong 1 625 cm-1are attributed to the lattice water and ligand water molecules.As above mentioned,the resultsofIR spectrum arewell identical with those of X-ray diffraction strutural analysis.

2.3 UV-Vis spectrum

The UV-Vis spectrum(Fig.4)of 1 displays a strong absorption at 260 nm and a weak peak at near 191 nm,which are associated with the charge-transfer bands corresponding to Ot→W and Ob(c)→W,respectively.

2.4 TG analyses

The thermalgravimetric curve of1 (Fig.5)indicates two steps of weight loss,giving a total weight loss of 30.63%in the range of 25~850 ℃ ,accordant with the calculated loss of 29.28% .Thefirst stage from 25 to 412℃is attributed to the removal of three organic ammonium molecules,and the observed weight loss 22.40%is consistent with the calculated value 21.93%.The second stage with the weight loss of 8.23%occurs between 412 and 800℃,which may be assigned to the loss of three methyl and three phenyl(calcd.7.35%).

2.5 XRPD patterns

The experimental XRPD pattern of the bulk product of 1 is in good agreement with the simulated one that are based on the results from single-crystal XRD,which indicates the phase purity of the sample(Fig.6).The different intensities of the experimental and simulated XRPD patterns are due to the variation in the preferred orientation of the powder sample during data collection.

3 Conclusions

In summary,we have successfully incorporated diorganosilylgroupsintoa trivacantKeggin-type tungstophosphate.The title compound is the first example of POM-based diorganosilyl group-substituted organosilyl derivative.Further,the successful synthesis of 1 may provide possibilities for designing new diorganosilyl group-substituted organosilyl derivatives.

[1]Pope M T.Heteropoly and Isopoly Oxometalates.Berlin:Springer-Verlag,1983.

[2]Pope M T,Müller A.Angew.Chem.Int.Ed.Engl.,1991,30:34-38

[3]Proust A,Thouvenot R,Gouzerh P.Chem.Commun.,2008,6:1837-1852

[4]Yamase T.Chem.Rev.,1998,98:307-326

[5]CoronadoE,Gómez-GarciaCJ.Chem.Rev.,1998,98:273-296

[6]Rhule J T,Hill C L,Judd D A.Chem.Rev.,1998,98:327-358

[7]Gouzerh P,Proust A.Chem.Rev.,1998,98:77-111

[8]Ho R K C,Klemperer W G.J.Am.Chem.Soc.,1978,100:6772-6774

[9]Chorghade G S,Pope M T.J.Am.Chem.Soc.,1987,109:5134-5138

[10]Xin F,Pope M T.Organometallics,1994,13:4881-4886

[11]Xin F,Pope M T.Inorg.Chem.,1996,35:5693-5695

[12]Xin F,Pope M T,Long G J,et al.Inorg.Chem.,1996,35:1207-1213

[13]Sazani G,Pope M T.Dalton Trans.,2004,13:1989-1994

[14]Bareyt S,Piligkos S,Hasenknopf B,et al.J.Am.Chem.Soc.,2005,127:6788-6794

[15]Hussain F,Kortz U,Keita B,et al.Inorg.Chem.,2006,45:761-766

[16]Sun Z G,Liu Q,Liu J F.Inorg.Chem.Commun.,2000,3:328-330

[17]Mayer C R,Hervé M,Lavanant H,et al.Eur.J.Inorg.Chem.,2004,5:973-977

[18]Mayer C R,Thouvenot R.J.Chem.Soc.Dalton Trans.,1998:7-13

[19]Kim G S,Hagen K S,Hill C L.Inorg.Chem.,1992,31:5316-5324

[20]Mayer C R,Herson P,Thouvenot R.Inorg.Chem.,1999,38:6152-6158

[21]Schroden R C,Blanford C F,Melde B J,et al.Chem.Mater.,2001,13:1074-1081

[22]Mayer C R,Thouvenot R,Lalot T.Macromolecules,2000,33:4433-4437

[23]Judeinstein P,Deprun C,Nadjo L.J.Chem.Soc.Dalton.Trans.,1991,8:1991-1997

[24]Knoth W H.J.Am.Chem.Soc.,1979,101:759-760

[25]Mayer C R,Roch-Marchal C,Lavanant H,et al.Chem.Eur.J.,2004,10:5517-5523

[26]Mayer C R,Neveu S,Cabuil V.Angew.Chem.,Int.Ed.Engl.,2002,41:501-503

[27]Mayer C R,Fournier I.Chem.Eur.J.,2000,6:105-110

[28]Mazeaud A,Ammari N,Robert F,et al.Angew.Chem.,Int.Ed.Engl.,1996,35:1961-1964

[29]Mazeaud A,Dromzee Y,Thouvenot R.Inorg.Chem.,2000,39:4735-4740

[30]Niu J Y,Li M X,Wang J P.J.Organomet.Chem.,2003,675:84-90

[31]Hasegawa T,Shimizu K,Seki H,et al.Inorg.Chem.Commun.,2007,10:1140-1144

[32]Agustin D,Coelho C,Mazeaud A,et al.Z.Anorg.Allg,Chem.,2004,630:2049-2053

[33]Sakai Y,Shinohara A,Hayashi K,et al.Eur.J.Inorg.Chem.,2006,1:163-171

[34]Nomiya K,Hayashi K,Kasahara Y,et al.Bull.Chem.Soc.Jpn.,2007,80:724-731

[35]Bi L H,Al-Kadamany G,Chubarova E V,et al.Inorg.Chem.,2009,48:10068-10077

[36]Klemperer W G,Ginsberg A P.Inorganic Syntheses,1990,27:74-85

[37]Sheldrick G M.SHELXTL97,Program for Crystal Structure Solution,University of G?ttingen,G?ttingen,Germany,1997.

A Methylphenylsilyl Group-Substituted Derivative Based on the Trivacant Keggin Structure Tungstophosphate[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3]:Synthesis and Structural Characterization

ZHANG Dong-Di1,2WANG Ke2YAN Qing-Xia2MA Peng-Tao2WANG Jing-Ping*,2
(1Pharmaceutical College,Henan University,Kaifeng,Henan 475004,China)
(2Institute of Molecular and Crystal Engineering,College of Chemistry and Chemical Engineering,Henan University,Kaifeng,Henan 475004,China)

A methylphenylsilyl group-substituted derivative[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3](1)has been obtained by reaction of the trivacant [α-A-PW9O34]9-anion with dichloromethylphenylsilane C6H5SiCH3Cl2in acetonitrile.The new complex was characterized by elemental analysis,IR spectra,UV spectra,thermogravimetric analysis and X-ray crystallography.The compound 1 crystallizes in the trigonal space group R3m,with lattice constants a=2.261 3(2)nm,b=2.261 3(2)nm,c=1.797 6(4)nm,V=7.960 2(18)nm3,and Z=3.The polyoxoanion[α-A-PW9O34(C6H5SiCH3)3]3-has a structure of virtual C3vsymmetry with three C6H5SiCH3groups grafted on the surface of the trivacant tungstophosphate and displays an “open-structure”.CCDC:830334.

organosilyl;trivacant tungstophosphate;crystal structure;synthesis

O614.61+3

A

1001-4861(2012)10-2236-05

2012-03-26。收修改稿日期:2012-09-06。

國(guó)家自然科學(xué)基金(No.21071042);河南省基礎(chǔ)與前沿技術(shù)研究課題(No.122300410126)資助項(xiàng)目。

*通訊聯(lián)系人。E-mail:jpwang@henu.edu.cn

猜你喜歡
結(jié)構(gòu)
DNA結(jié)構(gòu)的發(fā)現(xiàn)
《形而上學(xué)》△卷的結(jié)構(gòu)和位置
論結(jié)構(gòu)
新型平衡塊結(jié)構(gòu)的應(yīng)用
模具制造(2019年3期)2019-06-06 02:10:54
循環(huán)結(jié)構(gòu)謹(jǐn)防“死循環(huán)”
論《日出》的結(jié)構(gòu)
縱向結(jié)構(gòu)
縱向結(jié)構(gòu)
我國(guó)社會(huì)結(jié)構(gòu)的重建
人間(2015年21期)2015-03-11 15:23:21
創(chuàng)新治理結(jié)構(gòu)促進(jìn)中小企業(yè)持續(xù)成長(zhǎng)
主站蜘蛛池模板: 久久性妇女精品免费| 国产96在线 | 国产福利在线免费观看| 国产麻豆精品久久一二三| 国产精品v欧美| 狠狠干欧美| 国产成人精品日本亚洲| 一级毛片无毒不卡直接观看| 日韩成人在线网站| 日韩精品无码一级毛片免费| 日韩欧美国产区| 国产第一页第二页| 成人免费网站久久久| 综合人妻久久一区二区精品 | 国产黄色片在线看| 91精品aⅴ无码中文字字幕蜜桃| 91精品国产一区自在线拍| 国产精品七七在线播放| 亚洲国产欧美国产综合久久 | 国产免费久久精品99re不卡| 日韩精品专区免费无码aⅴ| 熟妇丰满人妻av无码区| 2022国产无码在线| 色欲综合久久中文字幕网| 97国产精品视频自在拍| 精品无码一区二区三区在线视频| 国产精品亚洲综合久久小说| 思思热精品在线8| 亚洲日产2021三区在线| 欧美国产综合色视频| 国产精品密蕾丝视频| 亚洲国产综合精品一区| 奇米影视狠狠精品7777| 91九色视频网| 91精品国产自产91精品资源| 91精品视频播放| 日韩欧美高清视频| 欧美在线视频不卡第一页| 91热爆在线| 超清无码熟妇人妻AV在线绿巨人| 欧美区国产区| 国产精品毛片一区视频播| 伊人久久青草青青综合| 欧美日韩高清| AV不卡无码免费一区二区三区| 国产又黄又硬又粗| 亚洲成综合人影院在院播放| 欧美激情网址| a天堂视频| 在线无码av一区二区三区| 四虎影视无码永久免费观看| 婷婷亚洲视频| 亚洲精品无码久久毛片波多野吉| 97色伦色在线综合视频| 日韩在线永久免费播放| 日韩欧美国产成人| 亚洲精品爱草草视频在线| 久久香蕉国产线看精品| 久久一日本道色综合久久| 首页亚洲国产丝袜长腿综合| 91无码视频在线观看| 国产精品偷伦视频免费观看国产 | 亚洲精品视频网| 黄片一区二区三区| 国产成人亚洲欧美激情| 欧美在线黄| 国产乱视频网站| 免费国产无遮挡又黄又爽| 国产乱子伦精品视频| 国产精品亚洲专区一区| 色综合综合网| 青青草原国产av福利网站| 亚洲精品少妇熟女| 国产精品部在线观看| 91青草视频| 2021国产v亚洲v天堂无码| 欧美色99| 日本欧美中文字幕精品亚洲| 国产欧美日韩91| 国产成人综合亚洲欧美在| 不卡的在线视频免费观看| 一本一道波多野结衣一区二区|