999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

關(guān)于遺傳可遮和遺傳σ-亞緊可數(shù)乘積的注記

2012-07-05 14:29:52趙斌李秀玲官春梅
關(guān)鍵詞:性質(zhì)

趙斌,李秀玲,官春梅

(喀什師范學(xué)院數(shù)學(xué)系,新疆喀什 844007)

關(guān)于遺傳可遮和遺傳σ-亞緊可數(shù)乘積的注記

趙斌,李秀玲,官春梅

(喀什師范學(xué)院數(shù)學(xué)系,新疆喀什 844007)

證明了在逆序列的情形下,可遮空間、強(qiáng)可遮空間在假設(shè)X是可數(shù)仿緊空間的條件下可被其極限空間保持,進(jìn)一步證明了遺傳可遮,遺傳強(qiáng)可遮及遺傳σ-亞緊性在無(wú)需對(duì)投射及極限空間X做任何假設(shè)的情況下即可被其逆極限空間保持.作為上述兩個(gè)結(jié)果的應(yīng)用,分別給出了兩個(gè)相關(guān)的可數(shù)Tychonoff乘積定理.

逆序列;可數(shù)仿緊;可遮;強(qiáng)可遮;遺傳可遮;遺傳σ-亞緊

1 引言及預(yù)備

正規(guī)性及覆蓋性的乘積性質(zhì)的研究是拓?fù)鋵W(xué)中重要的研究方向,通過(guò)逆系統(tǒng)的極限性質(zhì)研究正規(guī)性及覆蓋性的乘積性質(zhì)是一個(gè)有效的方法[1-4].在假設(shè)逆極限空間X是κ-仿緊的通常條件下,注意到關(guān)于可遮及強(qiáng)可遮性逆極限保持問題仍未得到完全解決[5-7].此外,文獻(xiàn)[8-9]利用散射分解,σ-點(diǎn)有限開膨脹分別給出了關(guān)于遺傳可遮及遺傳σ-亞緊的刻劃,并利用這些刻劃研究了遺傳可遮及遺傳σ-亞緊乘積性質(zhì),得到了如下的結(jié)論.

定理A[8-9]設(shè)是遺傳可遮的(遺傳σ-亞緊的),則X也是遺傳可遮的(遺傳σ-亞緊的).

針對(duì)可遮及強(qiáng)可遮性逆極限問題,本文將證明在逆序列的情況下,可遮及強(qiáng)可遮性在通常的可數(shù)仿緊條件下能夠被其逆序列的極限空間所保持.同時(shí)對(duì)遺傳可遮、遺傳強(qiáng)可遮及遺傳σ-亞緊的逆極限性質(zhì)也進(jìn)行了討論,可以看到甚至在無(wú)需對(duì)投射及極限空間X做任何假設(shè)的情況下,遺傳可遮、遺傳強(qiáng)可遮及遺傳σ-亞緊即可為其逆序列的極限空間所保持,作為這一結(jié)果的推論,可直接推導(dǎo)出定理A的結(jié)論.

本文所有的拓?fù)淇臻g簡(jiǎn)稱為空間,除非特別指出所有空間不附加任何分離條件,所有映射均為連續(xù)映射.若X為一拓?fù)淇臻g且A?X,|A|表示集合A的基數(shù).設(shè)A是空間X的子集族且x∈X,記

ω表示自然數(shù)集或最小無(wú)限基數(shù).文中未提及的概念及符號(hào)見文獻(xiàn)[10-11].以下的定義是大家熟知的,重述如下:

定義1.1設(shè)X為空間.

(1)設(shè)κ為無(wú)限基數(shù),稱X為κ-仿緊的,如果對(duì)X的每個(gè)勢(shì)不超過(guò)κ的開覆蓋有局部有限開加細(xì).

特別地,稱X為可數(shù)仿緊的,如果對(duì)X的每一可數(shù)開覆蓋有局部有限開加細(xì).

(2)稱空間X是可遮的(強(qiáng)可遮的),如果X的每個(gè)開覆蓋有σ-互不相交(σ-離散的)的開加細(xì).

(3)稱空間X是遺傳可遮的(遺傳強(qiáng)可遮的),如果X的每一個(gè)子空間是可遮的(強(qiáng)可遮的).

(4)稱空間X是σ-亞緊的,如果X的每個(gè)開覆蓋有σ-點(diǎn)有限的開加細(xì).

(5)稱空間X是遺傳σ-亞緊的,如果X的每一個(gè)子空間是σ-亞緊的.

設(shè)Λ為有向集,稱集族U={Uα|α∈Λ}是定向上升的,如果對(duì)任意的α,β∈Λ且α≤β,有Uα?Uβ.

設(shè)X,Y為拓?fù)淇臻g且f:X→Y為滿射.如果對(duì)滿足f-1(y)?U的任一y∈Y及X中的任一開集U,有y∈int(f(U)),則稱f是偽開映射.

易看出滿開映射及滿閉映射均為偽開映射.

以下引理是證明定理時(shí)需要的.

引理1.1[1]設(shè)X是κ-仿緊空間,Λ為有向集且|Λ|=κ,U={Uα|α∈Λ}為X的開覆蓋且是定向上升的,則存在X的定向上升的開覆蓋V={Vα|α∈Λ}使得對(duì)任意的α∈Λ,有

關(guān)于遺傳性質(zhì),易知

引理1.2(i)空間X是遺傳可遮的當(dāng)且僅當(dāng)X的每一個(gè)開子空間是可遮的;

(ii)空間X是遺傳強(qiáng)可遮的當(dāng)且僅當(dāng)如果X的每一個(gè)開子空間是強(qiáng)可遮的;

(iii)空間X是遺傳σ-亞緊的當(dāng)且僅當(dāng)X的每一個(gè)開子空間是σ-亞緊的.

引理1.3空間X是可遮的當(dāng)且僅當(dāng)對(duì)X的任意開覆蓋U={Uα|α∈Λ},存在σ-互不相交的開覆蓋

證明充分性是顯然的,下證必要性.

若X是可遮的,對(duì)X的任意開覆蓋U={Uα|α∈Λ}(不妨設(shè)Λ是良序的),存在U的σ-互不相交的開加細(xì)W=∪n∈ωWn,對(duì)任意的n∈ω及α∈Λ,令

2 可遮,強(qiáng)可遮逆序列的極限及其乘積

在κ-仿緊的通常假設(shè)條件下,可遮、強(qiáng)可遮的逆極限是否可被其極限空間保持這一問題尚未解決[5-7].下面的定理說(shuō)明在逆序列的情形下,假設(shè)極限空間是可數(shù)仿緊空間時(shí),可遮、強(qiáng)可遮性可被其逆序列的極限所保持.

因此,由引理1.5知,X是可遮空間.

仿照文獻(xiàn)[4]定理3的處理方法,利用定理2.1可得到關(guān)于可遮、強(qiáng)可遮性的一個(gè)具有可數(shù)無(wú)限因子的乘積定理.

(i)可遮;(ii)強(qiáng)可遮.

3 遺傳可遮,遺傳強(qiáng)可遮,遺傳σ-亞緊逆序列的極限及其乘積

本節(jié)將證明在逆序列的情形下,遺傳可遮、遺傳強(qiáng)可遮性和遺傳σ-亞緊性甚至在不需要對(duì)投射及極限空間X做任何假設(shè)的情況下即可為其逆序列的極限所保持.利用這一結(jié)果可以得到關(guān)于遺傳可遮、遺傳強(qiáng)可遮和遺傳σ-亞緊的一個(gè)關(guān)于具有可數(shù)無(wú)限因子的乘積定理.

定理3.1設(shè)X為逆序列{Xi,,ω}的極限空間.若每一Xi具有下列性質(zhì),則X也具有相應(yīng)的性質(zhì).

(i)遺傳可遮;(ii)遺傳強(qiáng)可遮;(iii)遺傳σ-亞緊.

因此,G是σ-亞緊的,X是遺傳σ-亞緊空間.

類似定理2.2的處理方法,利用定理3.1可以得到下列關(guān)于遺傳可遮,遺傳強(qiáng)可遮,遺傳σ-亞緊的可數(shù)Tychonoff乘積性質(zhì).

(i)遺傳可遮;(ii)遺傳強(qiáng)可遮;(iii)遺傳σ-亞緊.

注意到定理3.2事實(shí)上是文獻(xiàn)[8-9]的主要結(jié)論,是定理3.1的直接推論.

[1]Chiba K.Normality of inverse limits[J].Math.Japonica,1990,35(5):959-970.

[2]Chiba K.Covering properties of inverse limits[J].Question and Answer in General Topology,2002,20:101-114.

[3]Chiba K,Yajima Y.Covering properties of inverse limits II[J].Topology Proceedings,2003,27:79-100.

[4]Zhao Bin.Inverse limits of spaces with the weak B-property[J].Math.J.Okayama Univ.,2008,50:127-134.

[5]熊朝暉.σ-滿正規(guī)空間的逆極限[J].數(shù)學(xué)學(xué)報(bào),2004,47:819-824.

[6]熊朝暉.正規(guī)可遮空間的逆極限[J].數(shù)學(xué)進(jìn)展,1998,27:541-545.

[7]曹金文,賈永進(jìn).正規(guī)強(qiáng)可遮空間的逆極限性質(zhì)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2008,24(1):186-189.

[8]Zhu Peiyong.Hereditarily screenableness and its Tychonoff products[J].Topology and its Applications. 1998,83:231-238.

[9]朱培勇.遺傳σ-亞緊空間及其乘積性質(zhì)[J].數(shù)學(xué)學(xué)報(bào),1998,41(3):531-538.

[10]Engelking R.General Topology,Revised and Completed Edition[M].Berlin:Heldermann Verlag,1989.

[11]Yasui Y.Generalized Paracompactness[M]//Topics in General Topology.New York:Elsevier Science Publishing Company,1989.

Note on countable products of hereditarily screenability and hereditarily σ-metacompactness

Zhao Bin,Li Xiuling,Guan Chunmei

(Department of Mathematics,Kashi Teacher′s College,Kashi844000,China)

In the case of inverse sequence,the screenability and strongly screenability can be preserved by the inverse limit spaces under the usually assumption of countable paracompactness of inverse limit spaces.Furthermore the hereditarily screenability,hereditarily strongly screenability and hereditarily σ-metacompactness can be preserved by the inverse limit spaces even without any assumption of the projections and the inverse limit spaces.As some applications,two theorems about countable Tychonoff product properties are given.

inverse sequence,countable paracompact,screenability,strongly screenability,hereditarily screenability,hereditarily σ-metacompact

O189.11

A

1008-5513(2012)04-0427-06

2012-02-08.

新疆維吾爾自治區(qū)高等學(xué)校科研計(jì)劃重點(diǎn)項(xiàng)目(XJEDU2008I31).

趙斌(1966-),教授,研究方向:一般拓?fù)鋵W(xué)及其應(yīng)用.

2010 MSC:54B10,54D20,54E18

猜你喜歡
性質(zhì)
含有絕對(duì)值的不等式的性質(zhì)及其應(yīng)用
MP弱Core逆的性質(zhì)和應(yīng)用
弱CM環(huán)的性質(zhì)
一類非線性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
隨機(jī)變量的分布列性質(zhì)的應(yīng)用
一類多重循環(huán)群的剩余有限性質(zhì)
完全平方數(shù)的性質(zhì)及其應(yīng)用
三角函數(shù)系性質(zhì)的推廣及其在定積分中的應(yīng)用
性質(zhì)(H)及其攝動(dòng)
九點(diǎn)圓的性質(zhì)和應(yīng)用
主站蜘蛛池模板: 伊人福利视频| 亚洲日韩高清在线亚洲专区| 国产爽妇精品| 一级全黄毛片| 国产v欧美v日韩v综合精品| 亚洲欧美一区二区三区蜜芽| 国产欧美日韩va| 色精品视频| 成人av专区精品无码国产| 色婷婷成人| 秘书高跟黑色丝袜国产91在线| 性欧美精品xxxx| 中文字幕在线观看日本| 天堂av综合网| 亚洲日韩国产精品无码专区| 国产一二视频| 高清亚洲欧美在线看| 婷婷色中文| 欧美日韩北条麻妃一区二区| 亚洲欧美人成人让影院| 国产高清毛片| 无码一区中文字幕| 欧美色图久久| 亚洲乱强伦| 精品国产Av电影无码久久久| 日韩欧美国产区| 亚洲国产日韩欧美在线| 国产精品污视频| 三上悠亚一区二区| 国产www网站| 精品日韩亚洲欧美高清a| 国产无套粉嫩白浆| 伊人五月丁香综合AⅤ| 高潮爽到爆的喷水女主播视频 | 一区二区欧美日韩高清免费| 久久精品人人做人人爽电影蜜月| 一区二区三区四区精品视频| 国产在线一区二区视频| 欧类av怡春院| 国产免费久久精品99re丫丫一| 91精品国产无线乱码在线| 亚洲第一区精品日韩在线播放| 亚欧美国产综合| 99热6这里只有精品| 亚洲人成亚洲精品| 国产小视频免费| 国产永久免费视频m3u8| 午夜免费视频网站| 18黑白丝水手服自慰喷水网站| 久久国产精品麻豆系列| 国产区福利小视频在线观看尤物| 亚洲天堂免费| 黄色在线不卡| 国产高清在线观看| 色综合天天综合中文网| 亚洲中文字幕无码mv| 成人小视频在线观看免费| 99视频国产精品| 激情综合网激情综合| 全部免费毛片免费播放| 国产午夜看片| 亚洲最猛黑人xxxx黑人猛交| 啊嗯不日本网站| 亚洲精品自产拍在线观看APP| 日韩a级片视频| 中国一级特黄视频| 国产成人精品日本亚洲77美色| 四虎影视无码永久免费观看| 国产原创自拍不卡第一页| 国产精品成人久久| 欧美精品影院| 日本免费a视频| 97人妻精品专区久久久久| 久久6免费视频| 国产va在线观看| 99久久亚洲综合精品TS| 国产精品大尺度尺度视频| 亚洲av日韩av制服丝袜| 欧美.成人.综合在线| 韩国福利一区| 国产福利微拍精品一区二区| 国产你懂得|