張 坤 吳建東 毛承雄 陸繼明 王 丹 黃 輝
(華中科技大學電氣與電子工程學院 武漢 430074)
風電系統由于風速、風向等自然條件的變化而不能持續地、穩定地輸出電能,這會對電網的電能質量及其穩定性產生較大的影響[1-4]。因而,在系統中配置一定容量的儲能裝置將起到平抑功率波動、維持發電/負荷動態平衡、保持電壓/頻率穩定的作用,從而實現風力發電系統安全、經濟、高效、優質地運行[5-8]。
就儲能系統的技術性能而言,其容量配置得越大,對風電機組功率波動的平滑效果就會越好,但這也同時增加了系統的投資成本,不能很好地滿足經濟性要求。因此,對于一定容量的儲能系統,如何通過對其自身的優化控制,來提高儲能系統在風電系統中的技術性能,已成為目前迫切需要解決的問題。文獻[7,8]在關于平滑風電功率波動的儲能系統的優化控制方面已經取得了一定的研究成果。其中,文獻[7]通過實時檢測儲能裝置的荷電狀態,相應地對并網功率參考值放大或縮小一定的倍數,以此來達到對儲能裝置荷電狀態的控制。文獻[8]通過加入一個反饋補償量的方式來修正儲能裝置充放電功率的大小,從而能夠有效地控制儲能裝置的荷電狀態,避免出現過度充電或深度放電的狀況發生。
本文以基于超級電容器的永磁直驅式風力發電系統為研究對象,通過實時檢測超級電容器組的荷電狀態SOC及其充放電狀態,并將超級電容器組實時檢測到的荷電狀態與其參考值SOCref的偏差ΔSOC以及超級電容器組此時的充放電狀態作為模糊控制器的輸入,根據其偏差程度和充放電狀態利用模糊規則來實時動態調節濾波時間常數T的大小,從而能夠實時控制風電并網功率指令值,以達到實時動態調節超級電容器組充放電功率大小的目的,使超級電容器組能夠避免出現過度充電或深度放電的狀況,并向著適中的荷電狀態轉變。
圖1是本文采用的基于超級電容器的永磁直驅式風力發電系統的拓撲結構。電機側變換器由三相不可控整流橋、濾波電容和Boost變換器構成,用于控制風力發電機的有功輸出;電網側變換器通過調節網側的d軸和q軸電流,控制其直流側電壓和流向電網的無功功率,實現有功和無功的解耦控制,通常運行在單位功率因數狀態。電網側變換器的直流側并入儲能系統,該系統由超級電容器組以及雙向DC-DC變換器等構成,用于控制風電系統的有功輸出。

圖1 基于超級電容器的永磁直驅風電系統Fig.1 Directly-driven wind power system using permanent synchronous generator based on ultra-capacitors
當風力發電機輸出功率高于系統輸出功率參考值時,即PG>Pref,把多余的能量存儲在儲能設備中;當發電機輸出功率低于系統輸出功率參考值時,即PG<Pref,可把儲能設備中存儲的能量釋放出來為電網提供功率支撐。通過這種方式將能夠有效地平滑風電機組輸出功率的波動,使風電系統輸出較為平滑的有功功率。

圖2 基于超級電容器的直驅式風力發電系統中變換器的控制框圖Fig.2 Block diagram of converters in directly-driven wind generation system based on ultra-capacitors
電機側Boost變換器的控制框圖如圖2所示。圖中,通過調節Boost變換器的功率參考值以實現風能的最大功率跟蹤[9],與風力發電機輸出功率PG進行比較通過功率調節器得到Boost變換器的調制電流參考值,與升壓斬波器輸入電流i0進行比較再通過電流調節器得到升壓斬波器占空比d0的反饋控制量,以達到電流對其參考值的快速跟蹤,作為占空比d0的前饋控制量,可以抑制升壓斬波器兩端的電壓波動給電流控制帶來的干擾[10]。
連接超級電容器組的雙向DC-DC變換器的控制原理如圖2所示。圖中,風力發電機發出的有功功率PG經一階低通濾波器(時間常數T可變)得到并網功率參考值Pref,一階低通濾波器的可變時間常數T由超級電容器組的荷電狀態SOC與其參考值SOCref的偏差ΔSOC以及超級電容器組此時的充放電狀態經模糊控制器得到,從而實時控制并網功率參考值Pref的輸出,如圖3所示。Pref與并網功率PH的偏差通過功率調節器得到雙向DC-DC變換器的調制電流指令值;與其反饋值i1進行比較再通過電流調節器得到占空比d1的反饋控制量,以達到電流對指令的快速跟蹤;作為占空比d1的前饋控制量,可以抑制電壓波動給電流控制帶來的干擾。

圖3 模糊控制器的結構框圖Fig.3 Block diagram of fuzzy logic controller
網側變換器采用電壓外環、電流內環的雙閉環控制結構。通過電壓環調節直流側電壓,直流電壓調節器的輸出作為d軸(有功)電流的參考值,使直流側電壓保持穩定;q軸(無功)電流參考值通常設為0,使系統運行在單位功率因數狀態。
通常并網功率參考值Pref由風力發電機發出的有功功率PG經一階低通濾波器得到,即

圖4為風力發電機發出的有功功率PG=2MW時,并網功率參考值Pref隨一階低通濾波器時間常數T的變化波形圖。由圖4可知,時間常數T的取值越小,并網功率參考值Pref對風電機組輸出功率PG的跟蹤速度越快,反之則越慢。

圖4 并網功率參考值Pref隨時間常數T的變化特性Fig.4 Relations between the reference power transmitted to the grid and the time constant
圖3 所示模糊控制器的作用就是根據超級電容器組的荷電狀態以及其充放電狀態給出合適的時間常數值T,從而實時動態調節風電并網功率參考值,以達到對超級電容器組輸出功率及其荷電狀態的實時控制。當超級電容器組荷電狀態偏高時,若處在充電狀態下,則減少時間常數,使并網功率參考值對風電場輸出功率的跟蹤速度變快,從而相對減少超級電容器組充電功率的大小,以減緩其荷電狀態升高的速度,防止超級電容器組出現過度充電的狀況;若處在放電狀態下,則增大時間常數,使并網功率參考值對風電場輸出功率的跟蹤速度變慢,從而相對增大超級電容器組的放電功率,加速其荷電狀態的降低,使之向著適中的荷電狀態變化。反之亦然,當超級電容器組荷電狀態偏低時,若處在充電狀態下,則增大時間常數,使并網功率參考值對風電場輸出功率的跟蹤速度變慢,從而相對增大超級電容器組的充電功率,加速其荷電狀態的回升,使之向著適中的荷電狀態變化;若處在放電狀態下,則減少時間常數,使并網功率參考值對風電場輸出功率的跟蹤速度變快,從而相對減少超級電容器組放電功率的大小,以減緩其荷電狀態降低的速度,防止超級電容器組出現深度放電的狀況。
根據超級電容器組控制系統的上述特性,本文采用兩輸入-單輸出的二維結構形式。
輸入1:荷電狀態的偏差ΔSOC=SOC-SOCref,其中,SOC為超級電容器組的實時荷電狀態,SOCref為超級電容器組荷電狀態的參考值(本文取SOCref=60%),取其語言變量為E1,基本論域為[-40%,40%],模糊論域為{-3,-2,-1,0,+1,+2,+3},對應的模糊子集為{NB,NM,NS,ZO,PS,PM,PB},分別表示當前超級電容器組的荷電狀態,相對于設定值為{極低,很低,偏低,適中,偏高,很高,極高}。
超級電容器組荷電狀態的參考值SOCref的選取取決于使超級電容器組能夠正常工作所允許的荷電狀態取值范圍。若超級電容器組荷電狀態在20%~100%時能夠正常工作,則其參考值SOCref可取為60%,即:SOCref=20%+(100%-20%)/2=60%,以此作為超級電容器組適中的荷電狀態。
輸入2:超級電容器組的充放電狀態,取其語言變量為E2。N表示超級電容器組處于放電狀態,P表示超級電容器組處于充電狀態。超級電容器組的充放電狀態可由風電場輸出功率PG與實際并網功率PT的大小來確定,若PG<PH,表示超級電容器組處于放電狀態,若PG>PH,表示超級電容器組處于充電狀態。
輸出:一階低通濾波器時間常數T,其基本論域為[0s,3000s],模糊論域為{0,1,2,3,4,5,6},對應的模糊子集為{EL,VL,RL,ZO,RB,VB,EB},分別表示濾波時間常數為{極小,很小,偏小,適中,偏大,很大,極大}。
濾波時間常數T的數量級選取主要取決于風電機組在一定時段(1min或10min)內的功率變化率,以及在該時段內風電并網功率所允許的最大變化率。若風電機組的功率變化率越大,風電并網功率所允許的最大變化率越小,則時間常數T的數量級會越高。反之,則會越低。
模糊控制器的輸入輸出隸屬度函數都采用靈敏性較強的高斯隸屬函數,去模糊化方法采用重心法。
根據前面描述的超級電容器組荷電狀態的偏差大小及其充放電狀態所對應的濾波時間常數輸出的關系,給出模糊控制器的控制規則見下表。表中的模糊規則充分反映了時間常數T在不同的荷電狀態偏差ΔSOC及其充放電狀態下的變化特性?,F從表中選取以下兩條規則加以說明。
規則1:IF E1 is PB and E2 is P,THENTis EL。
規則2:IF E1 is NB and E2 is P,THENTis EB。
規則1解釋為:當荷電狀態SOC與其參考值SOCref偏差ΔSOC正極大時(PB)且超級電容器組處于充電狀態(P)時,模糊控制器給出的時間常數輸出為極小值(EL)。時間常數的最小值可取0,此時超級電容器組的充放電功率為0,其荷電狀態不變化。
規則2解釋為:當荷電狀態SOC與其參考值SOCref偏差ΔSOC負極大時(NB)且超級電容器組處于充電狀態(P)時,模糊控制器給出的時間常數T的輸出為極大值(EB)。

表 模糊控制器規則表Tab.Rules of fuzzy controller
利用Matlab/Simulink對圖1所示的基于超級電容器的直驅式風力發電系統進行仿真。具體的仿真參數如下:風力發電機的額定功率為2MW,輸出線電壓有效值為690V,頻率為50Hz;超級電容器組的額定電壓為600V,容量為1MW/400(kW·h);電網側變換器的直流側電壓額定值為2 200V,功率器件為IGBT,開關頻率均為5kHz;連接超級電容器組的雙向DC-DC變換器的升壓電感為0.1mH,電網側變換器的直流側電容為CDC=20mF,輸出濾波電感為L=1.8mH。
風電機組輸出有功功率PG如圖5所示。風電系統并網功率PH在0時刻的初始值為0.87MW;超級電容器組在0時刻的初始荷電狀態為80%;并假定超級電容器組荷電狀態的正常工作范圍為20%~100%;若超出這個范圍,超級電容器組將停止工作。以下是采用模糊控制和未采用模糊控制時系統的仿真結果及其分析。


圖5 采用模糊控制時系統的仿真波形Fig.5 Simulation results with fuzzy logic control strategy
當系統采用本文所提出的模糊控制時,其仿真結果如圖5所示。當超級電容器組荷電狀態較大時,若處于充電狀態下,則減少濾波時間常數,降低其充電功率的大小,減緩其荷電狀態的增加速度,防止出現過度充電的狀況發生;若處于放電狀態下,則增大濾波時間常數,提高其放電功率的大小,加速其荷電狀態的降低,使之向著適中的荷電狀態轉變,與此同時對風電機組的功率波動還能起到較好的平滑效果。反之亦然,仿真結果很好地說明了所提控制方法的有效性和正確性。
當系統未采用本文所提出的模糊控制時,即采用固定的濾波時間常數T。一般情況下,濾波時間常數取得越大,則對風電機組功率波動的平滑效果會越好,但這同時也需要配置更大容量的超級電容器組,不利于經濟性。圖6所示為未采用模糊控制,濾波時間常數T=600s時的仿真波形。圖6中看出,超級電容器組在12.517min時,其荷電狀態將達到100%,之后一段時間將處于過度充電的狀態。圖7所示為未采用模糊控制,濾波時間常數T=400s時的仿真波形。由圖7b可見,雖然在仿真時段內能夠保證超級電容器組不出現過度充電或深度放電的狀況,但對風電機組功率波動的平滑效果不如采用模糊控制時的平滑效果好。

圖6 未采用模糊控制且T=600s時系統的仿真波形Fig.6 Simulation results without fuzzy logic control strategy and time constant T=600s


圖7 未采用模糊控制且T=400s時系統的仿真波形Fig.7 Simulation results without fuzzy logic control strategy and time constant T=400s
風電儲能系統的優化控制在提高其技術性能和經濟性方面將起到至關重要的作用。本文將模糊控制引入儲能系統的優化控制中,根據儲能系統實時的荷電狀態及其充放電狀態,通過模糊控制器實時地調節一階低通濾波器的時間常數,從而在實現平抑風電機組功率波動的同時,還能夠使儲能系統避免出現過度充電或深度放電的狀況,并向著適中的荷電狀態轉變。仿真結果驗證了上述所提控制策略的正確性和有效性。
[1] 孫濤,王偉勝,戴慧珠,等.風力發電引起的電壓波動和閃變[J].電網技術,2003,27(12): 62-66.Sun Tao,Wang Weisheng,Dai Huizhu,et al.Voltage fluctuation and flicker caused by wind power generation[J].Power System Technology,2003,27(12): 62-66.
[2] 遲永寧,王偉勝,劉燕華,等.大型風電場對電力系統暫態穩定性的影響[J].電力系統自動化,2006,30(15): 10-14.Chi Yongning,Wang Weisheng,Liu Yanhua,et al.Impact of large scale wind farm integration on power system transient stability[J].Automation of Electric Power System,2006,30(15): 10-14.
[3] 趙勇,胡雅娟,黃巍.風電場功率波動對電網電壓影響[J] .吉林電力,2007,35(2): 22-24.Zhao Yong,Hu Yajuan,Huang Wei.Effect of wind farm fluctuation power on grid voltage[J].Jilin Electric Power,2007,35(2): 22-24.
[4] Moreno V C,Duarte A H,Garcia U J.Propagation of flicker in electric power networks due to wind energy conversions systems[J].IEEE Transactions on Energy Conversion,2002,17(2): 267-272.
[5] 張步涵,曾杰,毛承雄,等.電池儲能系統在改善并網風電場電能質量和穩定性中的應用[J].電網技術,2006,30(15): 54-58.Zhang Buhan,Zeng Jie,Mao Chengxiong,et al.Improvement of power quality and stability of wind farms connected to power grid by battery energy storage system[J].Power System Technology,2006,30(15): 54-58.
[6] Luo C,Banakar H,Shen B,et al.Strategies to smooth wind power fluctuations of wind turbine generator[J].IEEE Transactions on Energy Conversion,2007,22(2): 341-349.
[7] Ushiwata K,Shishido S,Takahashi R,et al.Smoothing control of wind generator output fluctuation by using electric double layer capacitor[C].International Conference on Electrical Machines and Systems,Seoul,Korea,2007.
[8] Yoshimoto K,Nanahara T,Koshimizu G,et al.New control method for regulating state-of-charge of a battery in hybrid wind power/battery storage system[C].Power Systems Conference and Exposition,PSCE′2006: 1244-1251.
[9] 劉其輝,賀益康,趙仁德.變速恒頻風力發電系統最大風能追蹤控制[J].電力系統自動化,2003,27(20): 62-67.Liu Qihui,He Yikang,Zhao Rende.The maximal wind-energy tracing control of avariable-speed constant-frequency wind-power generation system[J].Automation of Electric Power System,2003,27(20):62-67.
[10] 陳瑤.直驅型風力發電系統全功率并網變流技術的研究[D].北京: 北京交通大學,2008.
[11] L Changling,H Banakar,S Baike,et al.Strategies to smooth wind power fluctuations of wind turbine generator[J].IEEE Transactions on Energy Conversion,2007,22(2): 341-349.
[12] R Cardenas,R Pena,G Asher,et al.Power smoothing in wind generation systems using a sensorless vector controlled induction machine driving a flywheel[J].IEEE Transactions on Energy Conversion,2004,19(1): 206-216.
[13] 何致遠,瞿曉.基于電源濾波的三相PWM整流器模糊控制策略研究[J].電工技術學報,2006,21(4):107-110.He Zhiyuan,Qu Xiao.Study on fuzzy control strategy of three-phase PWM rectifier as an active current harmonic filter[J].Transactions of China Electrotechnical Society,2006,21(4): 107-110.
[14] 陳鑫兵,何禮高.基于模糊控制的三電平逆變器中點電位平衡策略[J].電工技術學報,2007,22(10):103-108.Chen Xinbing,He Ligao.Research on neutral point potential balance of three-level inverter based on fuzzy logic control strategy[J].Transactions of China Electrotehcnical Society,2007,22(10): 103-108.
[15] 曾光,蘇彥民,柯敏倩,等.用于無功靜補系統的模糊-PID控制方法[J].電工技術學報,2006,21(6):40-44.Zeng Guang,Su Yanmin,Ke Minqian,et al.A hybrid fuzzy and PID control method for static var compensation[J].Transactions of China Electrotehcnical Society,2006,21(6): 40-44.
[16] 唐杰,羅安,歐劍波,等.配電靜止同步補償器的模糊自適應PI控制策略[J].電工技術學報,2008,23(2): 120-126.Tang Jie,Luo An,Ou Jianbo,et al.Voltage control strategy of D-STATCOM based on fuzzy-PI controller[J].Transactions of China Electrotehcnical Society,2008,23(2): 120-126.