999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Chemical Constituents of Ceratocarpus arenarius L.

2012-02-15 06:48:13LIUShanshanSUNWenYANGHongbingSUNWanfuXinjiangBingtuanKeyLaboratoryforGreenProcessingofChemicalEngineeringSchoolofChemistryandChemicalEngineeringShiheziUniversityShihezi83003ChinaAnalysisandResearchCenterXinjiangUniversi
天然產物研究與開發 2012年12期

LIU Shan-shan,SUN Wen,YANG Hong-bing* ,SUN Wan-fuXinjiang Bingtuan Key Laboratory for Green Processing of Chemical Engineering,School of Chemistry and Chemical Engineering,Shihezi University,Shihezi 83003,China;Analysis and Research Center,Xinjiang University,Urumqi 830046,China

Introduction

Xinjiang is the largest distribution area of Chenopodiaceae plants in China due to its complex geographical environment and unique climatic conditions.Plants of Chenopodiaceae family are closely related to human life.For example,Beta vulgaris is the raw material for sugar manufacture;Chenopodium ambrosioides and Salsola collina are pharmaceutical raw materials;Anabasis aphylla is raw material for agricultural insecticide manufacture.

Ceratocarpus arenarius L.is an annual herb belonging to genus Ceratocarpus of Chenopodiaceae and is only distributed in Xinjiang in China.Current studies on C.arenarius L.mainly focused on ecology[1,2],researches on its chemical composition had not been reported.

Experimental

General

Melting point was determined on XT4-100B microelting point apparatus and uncorrected.1H NMR(400 MHz)and13C NMR(100 MHz)spectra were recorded on a Bruker-DMX 400 spectrometer in CDCl3,DMSO-d6and CD3OD,with TMS as an internal standard and reported in ppm(δ).Column chromatograph was performed with silica gel(200-300 mesh,Zhigao Huangwu Chemical Co.,China)and Sephadex LH-20(GE healthcare Bio-science AB).TLC on silica gel GF254was detected with I2and 5%H2SO4-EtOH solution.

Plant material

C.arenarius L.sample was collected from Manasi in Xinjiang,in September 2009,and was identified by Professor Yan Ping of Shihezi Unverisity.A voucher specimen had been kept in the laboratory for future reference.All plant materials were dried at room temperature and divided into small pieces before extraction.

Extraction and isolation

The air-dried aerial parts of C.arenarius L.(10 kg)were exhaustively extracted with alcohol at room temperature.The extract was evaporated under reduced pressure.The EtOH extract(1501.01 g)was then extracted with petroleum ether,ethyl acetate,chloroform and n-butanol.

The ethyl acetate extract(300 g)was subjected to a silica gel column chromatography using different solvent systems and yielded 8 fractions.Fractions 1-3 were not further purified because of low polarity.Compound 1(8.9 mg)was obtained from fraction 5 after subjecting to column chromatography eluted with petroleum ether-acetone(1∶0;6∶1)as white powder.Fraction 6 was subjected to column chromatography using petroleum ether-acetone(1∶0;3∶1)and Sephadex LH-20 column eluting with CHCl3-MeOH(1∶1),compound 2(35.8 mg)was obtained as white needle.Fraction 7 was subjected to silica gel column chromatography to give compound 3(30 mg).Compound 6(25 mg)was obtained from fraction 8 eluted with n-hexane-EtOAc(6∶1).Compounds 4(15 mg)and 5(20 mg)were obtained from fraction 4 after subjecting to repeated column chromatography using petroleum ether-acetone(1∶0;10∶1;5∶1).

Chloroform extract(12.06 g)was subjected to column chromatography on silica gel,six fractions were obtained by gradient elution with EtOAc-MeOH(1∶0;80∶1-20∶1).Fraction 1 was further separated by silica gel column chromatography and eluted with n-hexane-EtOAc(9∶1)to give compound 7(16 mg)as yellow powder.Similarly,Compound 8(30.1 mg)was isolated from fraction 2 eluting with CHCl3-MeOH(7∶3)as white needle.Compound 9(20 mg)was obtained from fraction 3 after subjecting to column chromatography eluted with CHCl3-MeOH(1∶0;80∶1)as colorless oil.Repeated column chromatography of fractions 4-6 eluting with CHCl3-MeOH(1∶0;15∶1;9∶1)afforded compound 10(11 mg)and compound 11(14 mg).

Structural identification

Compound 1White powder(EtOAc),mp 120-123oC;1H NMR(400 MHz,CDC13)δ:5.69(1H,br.s,H-6),3.68(1H,tt,J=5.2,10.8 Hz,H-3),2.52(1H,ddd,J=2.0,5.1,12.9 Hz,H-4α),2.40(1H,ddt,J=2.0,11.0,13.2 Hz,H-4β),2.24(1H,t,J=12.0 Hz,H-8),2.05(1H,dt,J=4.2,12.5 Hz,H-12β),1.20(3H,s,H-19),0.94(3H,d,J=7.0 Hz,H-21),0.87(3H,d,J=6.5 Hz,H-27),0.82(3H,t,J=7.0 Hz,H-29),0.68(3H,s,H-18);13C NMR(100 MHz,CDC13)δ:202.4(C-7),165.2(C-5),126.1(C-6),70.5(C-3),54.7(C-17),49.9(C-9,14),45.8(C-24),45.4(C-8),43.1(C-13),41.8(C-14),38.7(C-12),38.3(C-10),36.3(C-1),36.1(C-20),33.9(C-22),31.2(C-2),29.1(C-25),28.5(C-16),26.3(C-15),26.0(C-23),23.0(C-28),21.2(C-11),19.8(C-27),19.0(C-26),18.9(C-21),17.3(C-19),12.0(C-18,29).The spectral data were matched with literature[3],hence it was identified as 7-Oxo-β-sitosterol.

Compound 2White needle(EtOAc),mp 137-139oC;TLC and IR spectrum were identical to those of authentic sample;1H NMR(400 MHz,CDCl3)δ:5.33(1H,br.d,J=5.2 Hz,H-6),3.50(1H,m,H-3),0.99(3H,s,H-19),0.90(3H,d,J=6.6 Hz,H-21),0.84(3H,t,J=7.5 Hz,H-29),0.80(3H,d,J=6.9 Hz,H-27),0.78(3H,d,J=6.9 Hz,H-26),0.69(3H,s,H-18);13C NMR(100 MHz,CDCl3)δ:140.8(C-5),121.7(C-6),71.8(C-3),56.8(C-14),56.0(C-17),50.1(C-9),45.8(C-24),42.3(C-13),42.2(C-4),39.8(C-12),37.2(C-1),36.5(C-10),36.1(C-20),33.9(C-22),31.9(C-8),31.9(C-7),31.7(C-2),29.1(C-23),28.2(C-16),26.1(C-25),24.3(C-15),23.1(C-28),21.2(C-11),19.8(C-27),19.4(C-19),19.0(C-21),18.8(C-26),11.9(C-18),11.8(C-29).The data were in accordance with β-sitosterol[4,5].

Compound 3White amorphous powder(EtOAc),mp 264-266oC;Liebermann-Burchard reaction showed blue-green result;1H NMR(400 MHz,DMSO-d6)δ:5.33(2H,br.d,J=5.2 Hz,H-22,23),5.16(1H,m,H-6),4.90(1H,d,J=4.8 Hz,H-1'),4.43(1H,t,J=5.6 Hz,H-4'),0.95(3H,s,H-19),0.90(3H,d,J=6.4 Hz,H-21),0.83(3H,dd,J=2.8,7.2 Hz,H-29),0.78(3H,d,J=4.0 Hz,H-27),0.66(3H,d,J=8.0 Hz,H-26),0.62(3H,s,H-18);13C NMR(100 MHz,DMSO-d6)δ:140.7(C-5),138.3(C-22),129.0(C-23),121.4(C-6),100.8(C-1'),77.1(C-3),76.9(C-3'),76.7(C-5'),73.7(C-2'),70.3(C-4'),61.3(C-6'),56.4(C-14),55.6(C-17),49.8(C-9),45.4(C-24),41.9(C-13),39.1(C-12),38.5(C-4),37.0(C-1),36.4(C-10),35.7(C-20),31.6(C-7),31.3(C-8),29.4(C-2),28.9(C-25),27.7(C-16),24.0(C-15),22.8(C-28),20.8(C-11),19.9(C-26),19.3(C-19),19.1(C-27),18.8(C-21),12.0(C-29),11.9(C-18).Compound 3 was identified as stigmasteryl-3-O-β-D-glucopyranoside by a comparison of its spectral data and physical properties with those reported[6,7].

Compound 4Colorless solid(EtOAc);1H NMR(400 MHz,CDCl3)δ:3.64(2H,t,J=13.2 Hz,H-1),1.57(2H,t,J=6.4 Hz,H-2),1.38-1.19(26H,br.s,H-3 ~ H-14),0.89(3H,t,J=8.4 Hz,H-16);13C NMR(100 MHz,CDCl3)δ:63.1(C-1),32.8(C-2),31.9(C-14),29.7(C-5,13),29.7(C-6 ~C-12),29.4(C-4),25.8(C-3),22.7(C-15),14.1(C-16).The spectral data were matched with the reported[8],hence it was identified as n-hexadecanol.

Compound 5White needle crystal(EtOAc);1H NMR(400 MHz,CDCl3)δ:5.72(1H,br.s,H-4),1.18(3H,s,H-19),0.91(3H,d,J=6.4 Hz,H-21),0.84(3H,t,J=7.2 Hz,H-29),0.81(3H,d,J=7.2 Hz,H-26),0.73(3H,d,J=6.6 Hz,H-27),0.71(3H,s,H-18);13C NMR(400 MHz,CDC13)δ:199.7(C-3),171.8(C-5),123.8(C-4),56.0(C-17),55.9(C-14),53.8(C-9),45.8(C-24),42.4(C-13),39.6(C-12),38.6(C-10),36.1(C-20),35.7(C-8),35.6(C-1),34.0(C-22),33.9(C-2),33.0(C-6),32.1(C-7),29.7(C-25),29.1(C-16),28.2(C-23),26.1(C-15),24.2(C-28),23.1(C-11),21.0(C-26),19.8(C-27),19.0(C-19),18.7(C-21),17.4(C-29),11.9(C-18).The spectral data were matched with literature[9],hence it was identified as[24S]stigmast-4-en-3-one.

Compound 6Black-green solid(EtOAc);1H NMR(400 MHz,CDCl3)δ:9.50(1H,s,H-10),9.35(1H,s,H-5),8.56(1H,s,H-20),7.97(1H,dd,J=11.6,18.0 Hz,H-31),6.30(1H,d,J=1.6 Hz,H-32(E)),6.27(1H,s,H-132),6.19(1H,d,J=1.2 Hz,H-32(Z)),4.40(1H,m,H-18),4.23(1H,m,H-17),4.05(2H,m,H-174),3.89(3H,s,H-134),3.69(3H,s,H-121),3.66(2H,q,J=5.6 Hz,H-81),3.40(3H,s,H-21),3.21(3H,s,H-71),1.82(3H,d,J=7.2 Hz,H-181),1.69(3H,t,J=7.6 Hz,H-82),1.11(3H,t,J=7.2 Hz,H-175);13C NMR(100 MHz,CDCl3)δ:189.6(C-131),172.9(C-133),172.1(C-173),169.6(C-19),161.2(C-16),155.6(C-6),151.0(C-9),149.6(C-14),145.2(C-8),142.1(C-1),137.9(C-11),136.5(C-3),136.3(C-4),136.1(C-7),131.9(C-2),129.0(C-13),129.0(C-12),129.0(C-31),122.8(C-32),105.1(C-15),104.4(C-10),97.5(C-5),93.1(C-20),64.7(C-132),60.5(C-174),52.9(C-134),51.1(C-17),50.1(C-18),31.1(C-172),29.8(C-171),23(C-181),19.4(C-81),17.4(C-82),14.0(C-175),12.1(C-21),12.1(C-121),11.2(C-71).Compound 8 was identified as 173–ethoxyphaeophorbidea by comparison of its spectral data and physical properties with those reported[10,11].

Compound 7Yellow powder(chloroform),mp:291-292oC;1H NMR(400 MHz,DMSO-d6)δ:12.96(1H,s,H-5),10.84(1H,s,H-7),9.28(1H,s,H-4'),7.32(2H,s,H-2',6'),6.96(1H,s,H-3),6.56(1H,d,J=1.6 Hz,H-8),6.21(1H,d,J=2.0 Hz,H-6),3.89(6H,s,2 × OMe);13C NMR(100 MHz,DMSO-d6)δ:181.7(C-4),164.0(C-2),163.5(C-7),161.3(C-5),157.2(C-9),148.1(C-3',5'),139.8(C-4'),120.3(C-1'),104.3(C-2',6'),103.6(C-10),103.5(C-3),98.7(C-6),94.1(C-8),56.3(C-OMe).The data were in accordance with tricin[12,13].

Compound 8White needle(chloroform),mp:87-89oC;IR(KBr)cm-1:3340,3230,3020,1650,1590,1550,1510,1460,1380,1360,1280,1160,1120,1030,980,805;1H NMR(400 MHz,CD3OD)δ:7.43(1H,d,J=15.6 Hz,H-7'),7.06(1H,br.s,-NH-),7.05(1H,d,J=2.0 Hz,H-2'),7.00(2H,d,J=8.0 Hz,H-2,6),6.76(1H,dd,J=2.0,8.1 Hz,H-6'),6.69(1H,d,J=8.2 Hz,H-5'),6.43(2H,d,J=8.6 Hz,H-3,5),6.40(1H,d,J=15.6 Hz,H-8'),3.81(3H,s,3'-OMe),3.45(2H,t,J=7.2 Hz,H-8),2.72(2H,t,J=7.5 Hz,H-7).The data were in accordance with those of reported[14,15],hence compound 8 was identified as moupinamide.

Compound 9Colorless oil(chloroform);GC-MS(70 eV)m/z:41,57,83,113,131,149,167,279,390;1H NMR(400 MHz,CDCl3)δ:7.69(2H,dd,J=3.2,5.6 Hz,H-3,6),7.50(2H,dd,J=3.2,5.6 Hz,H-4,5),4.21(4H,m,H-2',2''),1.67(2H,m,H-3',3''),1.35(16H,m,H-4',5',6',8',4'',5'',6'',8''),0.89(12H,m,H-7',7'',9',9'');13C NMR(100 MHz,CDCl3)δ:167.8(C-1',1''),132.5(C-1,2),130.9(C-4,5),128.8(C-3,6),68.2(C-2',2''),38.8(C-3',3''),30.4(C-5',5''),28.9(C-4',4''),23.7(C-8',8''),23.0(C-6',6''),14.1(C-9',9''),10.9(C-7',7'').Compound 9 was identified as 1,2-benzenedicarboxylic acid,bis(2-ethylhexyl)ester by comparison of its spectral data with literature[16].

Compound 10Pale yellow oil jelly(chloroform);1H NMR(400 MHz,CDCl3)δ:5.41(5H,m,H-6,9',10',12',13'),4.17(1H,m,H-3),2.33(2H,t,J=7.5 Hz,H-11'),2.01(2H,t,J=14.0 Hz,H-2'),2.00(4H,m,H-8',14'),1.62(16H,m,H-3'-7',15'-17'),1.04(3H,s,H-19),1.02(3H,s,H-21),0.89(3H,t,J=6.3 Hz,H-18'),0.88(3H,m,H-29),0.85(3H,s,H-26),0.84(3H,s,H-27),0.69(3H,s,H-18);13C NMR(100 MHz,CDCl3)δ:173.5(C-1'),146.3(C-5),138.3(C-10'),129.3(C-12'),128.9(C-13'),125.4(C-9'),123.8(C-6),73.4(C-3),65.4(C-14),56.0(C-17),51.5(C-9),49.4(C-24),42.8(C-13),41.7(C-12),39.2(C-4),37.5(C-1),37.1(C-10),37.0(C-20),34.2(C-2'),34.0(C-22),32.0(C-7),31.9(C-8),31.9(C-6'),31.6(C-16'),29.7(C-7'),29.7(C-15'),29.5(C-4'),29.5(C-5'),29.4(C-25),28.8(C-16),28.0(C-2),27.7(C-14'),27.4(C-8'),26.4(C-23),25.9(C-11'),25.5(C-3'),24.9(C-15),23.1(C-28),22.7(C-17'),21.2(C-11),21.0(C-27),19.6(C-19),19.2(C-21),19.0(C-26),14.1(C-18'),12.3(C-29),12.0(C-18).Compound 10 was identified as β-sitosteryl linoleate by comparison of its spectral data with literature[17].

Compound 11Amorphous solid(chloroform);TLC reaction detected glucose;1H NMR(400 MHz,DMSO-d6)δ:6.66(2H,s,H-2',6'),6.60(2H,s,H-2″,6″),5.80(1H,dd,J=4.0,7.0 Hz,Glc-1),4.90(2H,t,J=4.5 Hz,H-2,6),4.24(7H,m,H-4 or H-8,Glc-2,3,4,6),4.05(2H,m,H-8 or H-4),3.93(1H,m,Glc-5),3.82(6H,m,2 ×OMe),3.79(6H,m,2 × OMe),3.11(2H,m,H-1,5);13C NMR(100 MHz,DMSO-d6)δ:152.8(C-3',C-5'),148.1(C-3″,C-5″),137.3(C-1'),135.0(C-4″),133.8(C-4'),131.5(C-1″),104.3(C-G1),103.8(C-2',6'),102.8(C-2″,6″),85.5(C-6),85.3(C-2),77.4(C-G5),76.7(C-G3),74.3(C-G2),71.4(C-4,8),71.3(C-G4),61.1(C-G6),56.6(C-1),53.8(C-5).From the analysis of NMR spectra and by comparison with reported spectral data[18,19],compound 11 was identified as syringaresinol mono-β-D-glucoside.

Reference

1 Gao R,Wei Y,Yan C.Amphicarpy and seed germination behavior of Ceratocarpus arenarius L..Chin J Ecol,2008,27:23-27.

2 Tian ZP,Lu JH,Yang QL,et al.The Anatomical structure of Ceratocarpes arenarius and its adaptation to three pieces of environmrnt.J Shihezi Univ,2008,26:668-671.

3 Ma XL,Lin WB,Zhang GL.Chemical constituents of Osmanthus yunnanensis.Nat Prod Res Dev,2009,21:593-599.

4 Li WH,Chang ST,Chang SC,et al.Isolation of antibacterial diterpenoids from Cryptomeria japonica bark.Nat Prod Res,2008,22:1085-1093.

5 Li C,Bu PB,Yue DK,et al.Chemical constituents from roots of Ficus hirta.China J Chin Mat Med,2006,31:131-133.

6 Lou FC,Ma QY,Du FL.Phytochemical study of Lysimachia foenumgraecum I.J China Pharm Univ,1989,20:37-39.

7 Wang JR,Peng SL,Wang MK,et al.Chemical constituents of Anemone tomentosa root.Acta Bot Sin,1999,41:107-110.

8 Xu SH,Yang K,Guo SH,et al.Studies on chemical constituents from Acropora pulchra.Nat Prod Res Dev,2003,15:109-112.

9 Cao JQ,Wang YN,Zhou YZ,et al.Isolation and identification of the chemical constituents from Blumea riparia DC.(Ⅱ).Chin J Med Chem,2008,18:449-451.

10 Wang LN,Xu BX,Lin HR,et al.Study on the chemical constituents of Geum japonicum var.chinense.Lishizhen med materia medica res,2009,20,798-799.

11 Jin PF,Deng ZW,Pei YH,et al.Two phaeophytin type analogues from marine sponge Dysidea sp..Chin Chem Lett,2005,16,209-211.

12 Wang JY,Chen D,Liang LJ,et al.Chemical constituents from flowers of Chrysanthemum indicum.China J Chin Mat Med,2010,35:718-721.

13 Hoang TL,Do TH,Chau TAM,et al.Constituents from the stem barks of Canarium bengalense with cytoprotective activity against hydrogen peroxide-induced hepatotoxicity.Arch Pharm Res,2012,35(1):87-92.

14 Qian TX,Yang SL,Xu LZ.Study on chemical constituents of Phaeanthus saccopetaloides(I).Nat prod Res Dev,1997,9(2):32-34.

15 Li Y,Qiu C,Zhang DM,et al.Studies on chemical constituents from branch of Trema angustifolia.China J Chin Mat Med,2004,29:235-237.

16 Su K,Gong M,Zhou J,et al.Chemical constituents from Nauclea Officinalis leaves.J Shehezi Univ,2010,28:257-259.

17 Wang R,Chou GX,Zhu EY,et al.Studies on chemical constituents of Paeonia veitchii L..Chin Pharm J,2007,42:661-663.

18 Lami N,Kadota S,Kikuchi T,et al.Constituents of the roots of Boerhaavia diffua L.III.Identification of Ca2+channel antagonistic compound from the methanol extract.Chem Pharm Bull,1991,39,1551-1555.

19 Song YB,Cheng WM,Qu GX,et al.Chemical constituents of Sinomenium acutym.J Shenyang Pharm Univ,2007,24,79-81.

主站蜘蛛池模板: 永久免费无码日韩视频| 国产精品手机在线播放| 亚洲精品无码高潮喷水A| 亚洲第一天堂无码专区| 国产欧美精品专区一区二区| 欧美日韩亚洲国产主播第一区| 久久精品无码中文字幕| 91美女视频在线观看| 五月天久久婷婷| 人妻无码一区二区视频| 2021国产在线视频| 青青操国产视频| 久久免费视频6| 中文成人在线| 97国产在线观看| 国产最新无码专区在线| 91视频精品| 免费高清自慰一区二区三区| 国产av无码日韩av无码网站| 欧美一级大片在线观看| 国产日韩AV高潮在线| 欧洲熟妇精品视频| 国产青榴视频| 美女裸体18禁网站| 亚洲码一区二区三区| 国产区免费精品视频| 欧美人人干| 依依成人精品无v国产| 中文字幕1区2区| 毛片基地美国正在播放亚洲 | 美女被操黄色视频网站| 国产免费高清无需播放器| 一级毛片免费的| 国产成人综合在线观看| 国产在线视频二区| 草草影院国产第一页| 欧美国产综合色视频| 亚洲成人高清无码| 免费日韩在线视频| 国产黄在线免费观看| 欧美成人亚洲综合精品欧美激情| 成人va亚洲va欧美天堂| 久久人妻系列无码一区| 亚洲三级色| 免费在线色| 久久精品无码中文字幕| 在线观看国产黄色| 六月婷婷综合| 国产男女XX00免费观看| 无码精品国产dvd在线观看9久| 欧美 亚洲 日韩 国产| 国产在线精品99一区不卡| 亚洲第一在线播放| 麻豆精品在线视频| 高清免费毛片| 九九九久久国产精品| 直接黄91麻豆网站| 久草视频精品| 91精品视频在线播放| a毛片免费看| 538国产视频| 亚欧乱色视频网站大全| 国产Av无码精品色午夜| 99久久亚洲综合精品TS| 丝袜无码一区二区三区| 成人伊人色一区二区三区| 国产欧美日韩另类精彩视频| 国产精品女主播| 免费在线国产一区二区三区精品| 久久久受www免费人成| 22sihu国产精品视频影视资讯| 88av在线看| 少妇被粗大的猛烈进出免费视频| 中文字幕永久在线看| 香蕉视频在线观看www| 天堂成人av| 亚洲美女AV免费一区| 白浆视频在线观看| 一区二区三区国产精品视频| 午夜老司机永久免费看片| 99国产在线视频| 国产精品观看视频免费完整版|