999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Synthesis and Characterization of Novel Fluoroalkyl Unsaturated Multi-carboxylic Acid Esters

2012-02-07 07:46:48YEHaohua葉皓華LIZhanxiong李戰雄FANDanCHENGuoqiang陳國強

YE Hao-hua(葉皓華),LI Zhan-xiong(李戰雄),FAN Dan(樊 丹),CHEN Guo-qiang(陳國強)*

1 National Engineering Laboratory for Modern Silk,Soochow University,Suzhou 215123,China

2 College of Textile and Clothing Engineering,Soochow University,Suzhou 215006,China

Introduction

Fluoride compounds are extensively used in fabrics finishing industry, electronic industry, and national defense[1-4].Owing to the acidity of fluorinated alcohols,direct esterification of such alcohols with carboxylic acid is difficult.Acryl chloride is usually used to react with fluorinated alcohols to prepare fluorinated acrylic esters.In the 1950s,1,1-heptafluorobutyl acrylate had been obtained in America and the Soviet Union by reacting CF3CF2CF2CH2OH with CH2=CHCOCl.Fluorinated acrylic ester could also be obtained by transesterification or reaction of methacrylate and fluorinated alcohols with strong acids as dehydrant[5].

Poly(fluoroalkyl acrylate)s with long fluoroalkyl(Rf)groups have excellentwaterand oilrepellentproperty.However,the degradation of them into perfluorinated carboxylic acids(PFCA)with long carbon chain may cause a series of problems such asbioaccumulating throughoutthe globe,particularly in the arctic[6,7].Research effort is now under way to develop environment-friendly materials such as polymers with short perfluorocarbon chains to replace the traditional reagents[8].Closely packed clusters of 2 or more Rf groups could lower the critical free surface energy and crystallinity,while they increase the water and thermal stability[9,10].Maleic acid,itaconic acid,and trans-aconitic acid are unsaturated carboxylic acids which can be polymerized and have been widely used in chemical industries.Among plenty of esterification methods reported[11,12],methods forpreparing unsaturated multicaboxylic acid esters with perfluoroalkyl groups were only reported in some patents.In the 1970s,maleic,itaconic esters of α,α,-dihydroperfluoroalcoholshad been prepared by reacting fluorinated alcohol with oleum,sulfur trioxide or chlorosulfonic acid,and then esterifying the resulting sulfate using corresponding acid[13].Several years later,fluorinated α,β-unsaturated esters were obtained by transesterification procedures[14].However,the previous method is not feasible and transesterifacation is neither economical nor practical.The current research is directed to partial filling of this gap.In this paper,a series of environment-friendly monomers derived from unsaturated carboxylic acid have been synthesized by directly reacting unsaturated multi-carboxylic acids and alcohols containing short fluorocarbon chains.The objective monomers were obtained by using p-toluene sulfonic acid as catalyst,hydroquinone as the anti-polymerizing agent,toluene as solvent and water carrying agent.The products were characterized by Fourier transform infrared spectroscopy(FT-IR),hydrogen-1 nuclear magnetic resonance(1H NMR),fluorine-19 nuclear magnetic resonance(19F NMR),and high resolution mass spectrometry(HRMS).

1 Experimental

1.1 Materials and instrumentation

FT-IR spectra were recorded on Thermo Electron Corporation Nicolet 5700 FT-IR spectrometer,using KBr pellets and films.1H NMR spectra were recorded on a Bruker AV 400(400 MHz)spectrometer and Bruker AV 300(300 MHz)spectrometer,respectively,using deuterated chloroform as solvent,Me4Si as internal standard.19F NMR spectra were obtained on a Bruker AV 300(300 MHz)spectrometer.HRMS spectra were obtained on a time-of-flight mass spectrometer(TOF-MS)instrument with electronimpact ionization at 70 eV and liquid chromatograph massspectrometer(LC-MS)instrument with electronimpact ionization at 175 V,respectively.

1.2 Synthesis of trans-aconitic acid

Trans-aconitic acid was synthesized according to Ref.[15].The reaction is shown in Scheme 1.

Scheme 1 Synthesis of trans-actonitic acid

The structure of the product was in well agreement with the result reported in Ref.[15].White small needles,mp:190℃,FT-IR(KBr)ν:2 983.7,1 731.1,1 700.4,1 421.6,1 292.0,1 224.1,912.0,853.2.

1.3 Typical procedure for the synthesis of fluorinated unsaturated ester

The synthetic routes for the preparation of the fluorinated monomers were outlined in Scheme 2.

To a 250 mL round bottomed flask equipped with thermometer,magnetic stirrer and Dean-Stark tube joined with a reflux condenser,maleic anhydride(9.8 g,0.1 mol)(or equivalent maleic acid),1,1,2,2-tetrahydroperfluoro-1-octanol(72.82 g,0.2 mol),hydroquinone(0.96 g),ptoluene sulfonic acid(1.52 g),toluene(150 mL)were added.Under a nitrogen atmosphere,the reaction vessel was heated in an oil bath,and the temperature was maintained at 114-118℃.Readings of temperature and the amount of water collected in the Dean-Stark tube were taken every 10 min from the time that the water was removed by azeotropic distillation with toluene.The reaction was kept for about 6 h until no water yielded and the water collected in the Dean-Stark tube was about 1.8 mL.After cooling to room temperature,the salt precipitated from the liquid was filtered to get red filtrate.And then the solvent was removed underreduced pressureto yield crudeproduct.Following column chromatography isolating,the pure2-butenedioic acid(Z)-,bis(1,1,2,2-perfluorooctyl)ester(1a)was obtained. Oil,yield 82%;FT-IR(KBr)v:3 001.5,1 741.4,1 647.3,1 467.7,1 389.4,1 334.0,1 289.9,1 226.3,1 158.1,1 110.7,1 095.5,1 047.8,735.4.1H NMR(CDCl3,300 MHz)δ(ppm):6.306(m,2H),4.478(t,J=7.5 Hz,4H),2.595(t,J=7.8 Hz,4H).19F NMR(CDCl3,300 MHz)δ(ppm):-64.822(m,12F),-81.161(t,J=14.4 Hz,6F),-108.536(m,4F),-124.090(m,J=11.7 Hz,4F).HRMS(ESI,70 eV)m/z(%):99.008 0(100),195.004 5(23.16),445.007 2(26.07).HRMS Calc.for C20H10O4F26:808.016 4,found:808.014 6.

Compound 2a,3a,1b,2b,and 3b were prepared under the same condition as that of 1a by the reaction of corresponding acid with 1,1,2,2-tetrahydroperfluorooctanol and 1,1,5-octafluoropentanol,respectively.

2-Butenedioic acid (Z)-, bis (1, 1, 5-octafluoropentanol)ester(1b)Oil,yield 58%;FT-IR(KBr)v:1 754.5,1 645.6,1 410.5,1 290.8,1 172.3,1 132.1,1 085.6,979.9,903.8,808.5.1H NMR(CDCl3,300 MHz)δ:6.417(s,2H),6.045(tt,J=5.2 Hz,and 52 Hz,2H),4.678(t,J=14 Hz,4H).19F NMR(CDCl3,300 MHz)δ:- 120.491(m,4F),- 126.062(m,4F),-130.691(m,4F),-138.104(d,J=55.2 Hz,4F).HRMS(ESI,175 V)m/z(%):562.050 7([M+NH4]+,100),567.006 9([M+Na]+,40).

Bis(1,1,2,2-perfluorooctyl)methylenesuccinate(2a)Oil,yield 85%;FT-IR(KBr)v:3 001.9,1 750.7,1 726.8,1 642.2,1 330.3,1 317.9,1 269.7,1 217.2,1 157.8,1 096.2,1 048.6,734.8.1H NMR(CDCl3,400 MHz)δ:6.377(m,1H),5.804(m,1H),4.449(t,J=7.8 Hz,2H),4.377(t,J=7.8 Hz,2H),3.359(m,2H),2.559(t,J=7.5 Hz,2H),2.521(t,J=8.1 Hz,2H).19F NMR(CDCl3,300 MHz)δ:-64.786(m,12F),-81.134(m,6F),-108.508(m,4F),-124.117(m,4F).HRMS(ESI,175 V)m/z(%):840.065 6([M+NH4]+,100),1 667.055 2([2M+NH4]+,10).

Bis(1,1,5-octafluoropentyl)methylenesuccinate(2b)Oil,yield 73%;FT-IR(KBr)v:2 977.8,1 762.2,1 740.8,1 644.7,1 403.3,1 322.7,1 291.0,1 171.1,1 129.7,1 084.7,1 059.0,975.0,903.2,809.4.1H NMR(CDCl3,400 MHz)δ:6.497(m,1H),6.054(tt,J=5.2 Hz,and 51.6 Hz,1H),6.045(tt,J=5.2 Hz,and 52 Hz,1H),5.908(m,1H),4.665(t,J=13.6 Hz,2H),4.602(t,J=13.6 Hz,2H),3.483(s,2H).19F NMR(CDCl3,300 MHz)δ:- 120.414(m,4F),- 125.996(m,2F),-126.089(m,2F),- 130.715- - 130.768(m,4F),-137.963(t,J=3 Hz,2F),-138.147(t,J=3 Hz,2F).HRMS(ESI,175 V)m/z(%):576.066 1([M+NH4]+,100).

Tri(1,1,2,2-tetrahydroperfluorooctanol)transaconitate(3a)Oil,yield 55%;FT-IR(KBr)v:3 001.5,1 781.2,1 738.1,1 653.4,1 468.1,1 416.6,1 330.7,1 272.8,1 223.5,1 159.8,1 110.8,1 094.0,1 048.7,961.9,828.7,735.0.1H NMR(CDCl3,400 MHz)δ:6.959(m,1H),4.510(t,J=7.6 Hz,2H),4.449(t,J=7.6 Hz,2H),4.387(t,J=7.6 Hz,2H),3.968(m,2H),2.513-2.603(m,6H).19F NMR(CDCl3,300 MHz)δ:-64.969(m,18F),-81.323(m,9F),-108.608(m,6F),-124.232(m,6F).HRMS(ESI,175 V)m/z(%):1 230.058 4([M+NH4]+,100),2 447.047 9([2M+NH4]+,10).

Tri(1,1,5-octafluoropentyl)trans-aconitate(3b)Oil,yield 30%;FT-IR(KBr)v:1 747.1,1 655.6,1 278.1,1 172.8,1 055.1.1H NMR(CDCl3,400 MHz)δ:7.122(d,J=12.9 Hz,1H),6.021(dtt,J=5.1 Hz,and 4.8 Hz,and 51.9 Hz,3H),4.752-4.534(m,6H),4.048(d,J=10.2 Hz,2H).19F NMR(CDCl3,300 MHz)δ:- 120.451(m,6F),-125.988(m,4F),-126.134(m,2F),-130.642(m,4F),-130.842(m,2F),-138.087(d,J=55.2Hz,6F).HRMS(ESI,175 V)m/z(%):834.058 7([M+NH4]+,100).

2 Results and Discussion

Plausible mechanism for the esterification of carboxylic acid is outlined in Scheme 3.The reaction between bicarboxylic anhydride and alcohol is usually carried by two steps:first,the generation of mono-ester can be proceeded fast even without the addition of catalyst.In the second step,generation of the bi-ester from mono-ester is slow,and the catalyst is favorable[16].The reaction of maleic acid,itaconic acid,transaconitic acid with alcohol into mono-ester could also be divided into two steps:dehydrating into anhydride and then addition reacting with alcohol.Once the temperature rises to a certain degree,the dehydration of these multi-carboxylic acids will begin.At the beginning of reaction,when temperature of mixed material raised to 110℃,equivalent amount of water could be isolated in 0.5-1.0 h,after then the generation of water was relatively slow.For trans-aconitic acid,two residual carboxylic acid groups in the monoester may locate in trans-positions and can not dehydrate into anhydride.The esterification of transcarboxylic acid groups could only carry on by the catalysis of acid,thus more time was required for the preparation of transaconitate.This phenomenon is in agreement with the mechanism mentioned above.Maleic anhydride is cheaper and easier to get,and it is more reasonable to use maleic anhydride as raw material.p-Toluene sulfonic acid was used as catalyst and toluene was used as water-carrying agent to separate the water from reactants and accelerate the reaction.

Esterification of 1,1,5-octafluoropentanol with certain carboxyl acid is more difficult than that of 1,1,2,2-tetrahydroperfluorooctanol.Under the same condition,the time needed for esterification of 1,1,2,2-tetrahydroperfluorooctanol with trans-aconitic acid was 12 h,and the volume of the collected water was equal to theoretical value,in contrast,it took 24 h to prepare tri(1,1,5-octafluoropentyl)trans-aconitate,and the water separated was only 3/4 of theoretical value.It may result from withdrawing electron effect of CF groups on—OH groups in fluorinated alcohols.The effect is more obvious in 1,1,5-octafluoropentanol.

Lower concentration NaOH solution is favorable for the neutralization of production.The addition of high concentration alkaline solution will generate too much p-toluene sulfonate,sodium hydroquinone,and sodium carboxylic acid,and may produce numerous foams during wash process,thus make it difficult to separate the product from water.

FT-IR spectra of the monomers show intense absorption bands at 1 730-1 760 cm-1arising from C=O stretch modes,C=C stretching vibrations around 1 640 cm-1and strong C—F absorption bands at 1 100-1 300 cm-1(Fig.1).The absence of wide absorption bands at about 3 400 cm-1shows no—OH group in the product.

Because of the high boiling point of the products,it is difficult to purify them by distillation.Here the objective products were isolated by flash column chromatography.The1H NMR results of obtained monomers are shown in Fig.2.The1H NMR spectra indicate the products are relatively pure with only a few smallimpurity peaksin the spectra.The high electronegativity of C=O and CF2has lowered the electronic density of adjacent CH2,thus it causes lower field migration of1H NMR for all the objective fluorinated unsaturated esters.Due to the existence of carboxylic groups in the molecule of the product,the molecules may combine with Na+in electronic spray ionization(ESI)mode.[2M+Na]+peak had appeared in the HRMS data of 1b.

For the obvious steric hindrance of COOR groups in the monomer molecular,maleates,itaconates,and aconitates show lower tendency to homopolymerization than acrylate.However,they show a great tendency to form alternating copolymers with certain types of comonomers such as vinyl monomers[13].These fluorinated copolymers can impart oil,water,and soil repellent properties to substrates,and they are especially useful reagent for water and oil proofing of textiles and metal.More details aboutthepolymerization and application ofthese unsaturated multi-carboxylic esters will be reported in our future work.

3 Conclusions

A series of environment-friendly monomers derived from unsaturated carboxylic acid have been synthesized by direct esterification of unsaturated multi-carboxylic acid and alcohols containing short fluorocarbon chain.Structures of the objective products have been verified by FT-IR,1H NMR,19F NMR,and HRMS.The high electronegativity of C=O and CF2has lowered the electronic density of adjacent CH2,and caused lower field migration of1H NMR forallthe objective fluorinated unsaturated esters.

[1]Yu M H,Gu G T,Meng W D,et al.Superhydrophobic Cotton Fabric Coating Based on a Complex Layer of Silica Nanoparticles and Perfluorooctylated Quaternary Ammonium Silane Coupling Agent[J].Applied Surface Science,2007,253(7):3669-3673.

[2]Kessman A J,Huckaby D K P,Snyder C R,et al.Tribology of Water and Oil Repellent Sol-Gel Coatings for Optical Applications[J].Wear,2009,267(1/2/3/4):614-618.

[3]Ye H H,Li Z X,Chen G Q,et al.Research Progress of Fluoride-Containing Acrylate Derivatives and Their Application on Textile[J].Advanced Materials Research,2011,331:229-236.

[4]Tang C C,Bando Y,Huang Y,et al.Fluorination and Electrical Conductivity of BN Nanotubes[J].Journal of the American Chemical Society,2005,127(18):6552-6553.

[5]Zhou Y M,Huang J Y.Synthesis of Perfluoroalkylethylacrylate with p-Toluene Sulphonic Acid as Catalyst[J].Chemical World,2003,44(5):263-265.(in Chinese)

[6]Giesy J P,Kannan K.Global Distribution of Perfluorooctane Sulfonate in Wildlife[J].Environmental Science &Technology,2001,35(7):1339-1342.

[7]Ellis D A,Martin J W,de Silva A O,et al.Degradation of Fluorotelomer Alcohols:a Likely Atmospheric Source of Perfluorinated Carboxylic Acids[J].Environmental Science &Technology,2004,38(12):3316-3321.

[8]Huang J Q,Meng W D,Qing F L.Synthesis and Repellent Properties of Vinylidene Fluoride-Containing Polyacrylates[J].Journal of Fluorine Chemistry,2007,128(12):1469-1477.

[9]Reddy V S,Weikel W J,Arbaugh J,et al.Synthesis and Characterization of New Fluorinated Polyacrylates[J].Polymer,1996,37(20):4653-4656.

[10]Cassidy P E,Aminabhavi T M,Farley J M.Polymers Derived from Hexafluoroacetone[J].Journal of Macromolecular Science,Part C:Polymer Reviews,1989,29(2/3):365-429.

[11]Hamcerencu M,Desbrieres J,Khoukh A,et al.Synthesis and Characterization of New Unsaturated Esters of Gellan Gum[J].Carbohydrate Polymers,2008,71(1):92-100.

[12]William P S,Pascale C,Corinne L D,et al.Effect of Catalytic Conditions on the Synthesis of New Aconitate Esters[J].Industrial Crops and Products,2012,35(1):203-210.

[13]Holland D G,BeitchmanB D. EthylenicallyUnsaturated Dicarboxylic Acid Esters of α,α-dihydroperfluoro Alcohols:US,3868408[P].1975.

[14]Kleiner E K,Dear R E A.Polymers of Unsaturated Esters of Polyfluoroalkylthio-Alcohols:US,4171415[P].1979.

[15]Bruce W F.Aconitic Acid[J].Organic Synthesis,1943,2:12-14.

[16]Hao X R,Yu Z Q,Dong L Y,et al.Kinetic Study of Synthesis of Dimethyl Maleate[J].Chemical Reaction Engineering and Technology,2002,18(2):104-108.(in Chinese)

主站蜘蛛池模板: 青青国产在线| 亚洲不卡影院| 久久99国产综合精品1| 国产精品免费露脸视频| 午夜啪啪网| aaa国产一级毛片| 毛片基地美国正在播放亚洲| 在线毛片免费| 欧美人人干| 精品国产三级在线观看| 成人在线不卡| 性欧美在线| 亚洲中文在线看视频一区| 国产精品亚欧美一区二区三区 | 在线日韩日本国产亚洲| 美女高潮全身流白浆福利区| 青青草原国产免费av观看| 国产高清不卡视频| 国产人碰人摸人爱免费视频| 国产麻豆永久视频| 亚洲水蜜桃久久综合网站| 成人在线观看不卡| 自慰高潮喷白浆在线观看| 亚洲无码高清一区二区| 亚洲午夜国产精品无卡| 欧洲在线免费视频| 国产精品熟女亚洲AV麻豆| 亚洲六月丁香六月婷婷蜜芽| 亚洲国产一成久久精品国产成人综合| 亚洲无码精品在线播放| 久久婷婷综合色一区二区| 久久精品一品道久久精品| 日韩一级毛一欧美一国产| 久草视频精品| 亚洲高清日韩heyzo| 国产白浆在线| 极品国产在线| 一级毛片在线免费看| 国产精品999在线| 国产一级毛片网站| www.youjizz.com久久| 欧美日韩资源| 人人妻人人澡人人爽欧美一区| 天天综合色网| 亚洲福利网址| 亚洲91在线精品| 四虎AV麻豆| 91福利一区二区三区| 91精品国产91欠久久久久| 欧美特级AAAAAA视频免费观看| 国产午夜福利亚洲第一| 宅男噜噜噜66国产在线观看| 日韩中文无码av超清| 亚洲妓女综合网995久久| 国产精品午夜电影| 激情无码视频在线看| 无码人妻免费| 日韩精品欧美国产在线| 人禽伦免费交视频网页播放| 1769国产精品免费视频| 精品国产福利在线| 国产男女免费视频| 亚洲黄色片免费看| 在线欧美一区| 欧美成人第一页| 精品亚洲麻豆1区2区3区| 国产黄视频网站| 国产精品极品美女自在线| 99偷拍视频精品一区二区| 国产女人18毛片水真多1| 日本午夜三级| 亚洲视频黄| 99九九成人免费视频精品 | 国产成人精品高清在线| 九九九精品成人免费视频7| 9丨情侣偷在线精品国产| 国产91全国探花系列在线播放| 国产欧美成人不卡视频| 欧美精品v| 亚洲中文在线看视频一区| 日日碰狠狠添天天爽| 亚洲自偷自拍另类小说|