999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Oscillation for the Solutions of Hyperbolic Partial Differential Equation with Damped Terms and High order Laplace Operator

2012-01-19 03:02:06GAOZhenghuiLUOLipingYANGLiu
衡陽師范學院學報 2012年6期

GAO Zheng-hui ,LUO Li-ping,YANG Liu

(Department of Mathematics and Computational Science,Hengyang Normal University,Hengyang Hunan 421002,China)

0 Introduction

The theory of the nonlinear differential equations with delay can be applied to many fields,such as biological medicine,engineering technology,physics and so on.Oscillation theory for the solution of the functional differential equation with delay is an important part to study functional differential equations.Oscillations of the solution for the delay hyperbolic partial differential equation has been studied by a number of authors,plenty of research achievements have been published,see[1-5].However,a few of papers have been published on oscillation of the solution for the delay hyperbolic partial differential equation containing damped terms,see[6-7].the relative research results of the oscillation of the solution for the continuous delay argument partial functional differential equation with damped terms are few,see[8].In this paper,we studied the oscillatory behaviors of the continuous delay argument hyperbolic partial differential equation with damped terms and high order Laplace operator

with following boundary value conditions

where(x,t)∈Ω×R+≡G,R+=[0,∞],Ω?Rnis bounded,?Ωis piecewise smooth,l≥1is integral,△is Laplace operator,and△nu=△(△n-1u),n≥1and nare integers,when n=0,△nu=u.

For the equation(1),suppose that the following conditions hold:

(C2)Bi(x,t,τ)∈C(×[a,b];R+),Bi(t,τ)=min{Bi(x,t,τ),x∈}.

(C3)αi(t,τ),βj(t,τ)∈C(R+×[a,b];R+),αi(t,τ)≤t,βj(t,τ)≤t,αi(t,τ),βj(t,τ)t,τare nondecreasing functions,α(t,τ)=,and+∞.(C4)m(τ)is nondecreasing real function onτin[a,b],the integration in(1)is Stieltjes integration.(C5)fi(u)∈C(R;R),and,if u≠0,it exists constants Mi>0,such that(C6)p(t)∈C(R+;R+),C(t)∈C(R+;R+),Dj(t,τ)∈C(R+×[a,b];R+).

Definition 1A function u(x,t)∈C2(G)∩C1(G-)is called a solution of the problem(1),(2),if it satisfies(1)in the domain G along with the boundary value condition.

Definition 2A solution u(x,t)of equation(1)is called oscillatory in the domain G,if for each positive

numberμhere exists a point(x0,t0)∈Ω×[μ,+∞],such that the condition u(x0,t0)=0holds,Otherwise,u(x,t)is called nonoscillatory.

The purpose of this paper are obtained some new sufficient conditions for the oscillation of each solution of the equation by using integral averaging technique and Riccati transformation.1 The main results

Lemma 1[9]The problem of eigenvalue(λis a constant)

The minimal eigenvalueλ0>0,and its corresponding eigenfunctionφ0(x)>0,x∈Ω.

Theorem 1For the equation(1),(2),if condition(C1)—(C6)holds,there exists functionφ(t)∈(t)∈C1(R+,R+)satisfy

then every solution of the equation(1),(2)is oscillated in G.

proof:Suppose u(x,t)are the nonoscillatory solutions of the equation(1)(2),that there existsμ>0,when t>μ,without loss of generality,we may assume that u(x,t)>0,(x,t)∈Ω×[μ,+∞].

For the equation(1),both sides multiplied byφ0(x)>0,and integrating with respect to xoverΩ,we can get

By Green's formula and boundary value condition(2),we have

From conditions(C1)—(C6):

then

multiplied both sides of(10)by

so w′(t)≤0,and w(t)≤w(t1).

To prove when t≥t1>0,w(t)≥0.or,if w(t)<0,w(t)≤w(t1)=α<0.

then

Take limit and from condition(C7),then

It contradictes v(t)≥0,so w(t)≥0.that is w(t)=v′(t),so v′(t)≥0and v″(t)≤0.

Let

then

Let t→+∞,and we combine with condition(C8),we have

It contradicts R(t)≥0.Theorem 1is proved.

Corollary 1For the equation(1),(2),the conditions(C1)—(C7)of theorem 1hold,satisfy(C′

then every solution of the equation(1),(2)is oscillatory in G.

According to the proof(8)of Theorem 1,we have

Similar to the proof of Theorem 1,we can get.

Theorem 2For the equation(1)(2),the conditions(C1)—(C7)of the Theorem 1hold,if there existed a functionφ(t)∈C1(R+,R+),satisfy

then every solution of the equation(1),(2)is oscillatory on G.

Corollary 2for the equation(1),(2),the conditions(C1)—(C7)of the Theorem 1hold,satisfy

then every solution of the equation(1),(2)is oscillatory in G.

according to the proof(8)of Theorem 1,we can get

Theorem 3For the equation(1),(2)the conditions(C1)—(C7)of the Theorem 1hold,if there existed functionφ(t)∈C1(R+,R+),satisfy

then every solution of the equation(1),(2)is oscillatory in G.

Corollary 3For the equation(1),(2)the conditions(C1)—(C7)of the Theorem 1hold,satisfy

then every solution of the equation(1),(2)is oscillatory in G.

2 Conclusion

In this paper,we studied the oscillatory behaviors of the continuous delay argument hyperbolic partial differential equation with damped terms and high order Laplace operator.By using integral averaging technique and Riccati transformation,some new sufficient conditions for the oscillation of each solution of the equation are obtained in the given boundary value conditions.

[1]D P Mishev,D D Bainov.Oscillation properties of the solutions of a class of hyperbolic equations of neutral type[J].Funkew.Ekvac,1986,29(2):213-218.

[2]Yu Yuanhong,Cui Baotong.On the forced oscillations of solutions of hyperbolic equations with deviating arguments.Acta Mathematicae Applicatae Sinica,1994,17(3):448-457.

[3]Cui Baotong.Oscillation properties of the solutions of hyperbolic differential equations with deviating arguments.Demonstration Math,1996,29(1):61-68.

[4]B S Lalli,Yu Y H,Cui B T.Oscillations of hyperbolic equations with functional arguments[J].Appl Math Comput,1993,53:97-110.

[5]Cui Baotong,Yu Yuanhong.Oscillation of certain hyperbolic delay differential equations[J].Acta Mathematical Applicate Sinica,1996,19(3):80-88.

[6]Yu Yuanhong,Hu Qingxi.Oscillation of solutions of partial functional differential equations with damped terms[J].Mathematics in Practice and Theory,2000,30(3):331-338.(in Chinese)

[7]Liu Anping.Oscillations of certain hyperbolic delay differential equations with damping terms[J].Math Applicate,1996,9(3):321-324.

[8]Gao Zhenghui,Luo Liping.Oscillation of the solutions of nonlinear neutral hyperbolic partial differential equation with continuous deviating arguments and damped terms.Mathematical Applicator,2008,21(2):339-403.(in Chinese)

[9]Ye Qixiao,Li Zhengyuan.Introduction to reaction-diffusion equations[M].Beijing:Science Press,1990.(in Chinese)

主站蜘蛛池模板: 97视频在线精品国自产拍| 黄色网页在线播放| 国产成人h在线观看网站站| 重口调教一区二区视频| 2021国产精品自产拍在线观看| 国产99在线| 亚洲欧美自拍一区| 狠狠干欧美| 99中文字幕亚洲一区二区| 五月婷婷精品| 在线播放91| 日韩欧美国产区| 日韩欧美国产另类| 亚洲国产天堂在线观看| 国产乱人伦精品一区二区| 色男人的天堂久久综合| 国产欧美一区二区三区视频在线观看| 干中文字幕| 99精品在线看| 夜夜操天天摸| 欧美激情综合| 91精品专区国产盗摄| 欧美在线一二区| 亚洲侵犯无码网址在线观看| 国产在线观看成人91| 午夜视频在线观看免费网站| 亚洲日韩在线满18点击进入| 欧美在线一二区| 大香伊人久久| 亚洲成人一区在线| 久久黄色免费电影| 天天色综网| 久久先锋资源| 亚洲成a人在线观看| 精品亚洲国产成人AV| 666精品国产精品亚洲| 久久久久免费看成人影片| 91视频区| 亚洲美女AV免费一区| 久久永久精品免费视频| 在线看免费无码av天堂的| 午夜无码一区二区三区在线app| 成年人国产视频| 国产乱子伦精品视频| 亚洲第一色网站| 国产精品jizz在线观看软件| 亚洲美女视频一区| 久久久久久尹人网香蕉| 亚洲精品男人天堂| 综合久久五月天| 国产精品福利导航| 婷婷伊人久久| 天堂av高清一区二区三区| 中国黄色一级视频| 久久久久久久97| 国产精品亚洲一区二区三区z| 草逼视频国产| 亚洲一区二区三区国产精华液| 第一区免费在线观看| 一区二区三区四区精品视频| 久久99久久无码毛片一区二区| 国产精品永久不卡免费视频 | 亚洲男人在线天堂| 国产v欧美v日韩v综合精品| 香蕉网久久| 国产一区免费在线观看| 国产av剧情无码精品色午夜| 99视频在线免费观看| 手机在线国产精品| 成人亚洲天堂| 亚洲成人播放| 亚洲欧美自拍中文| 草草影院国产第一页| 国产超碰一区二区三区| 国产大片喷水在线在线视频| 中国毛片网| 亚洲人成网站色7777| 日韩经典精品无码一区二区| 亚洲综合九九| 日韩欧美国产精品| 国产第一页屁屁影院| 欧美成人一区午夜福利在线|