彭曉莉 綜述,余小平 審校
(成都醫(yī)學(xué)院公共衛(wèi)生系,四川 成都 610083)
花青素(anthocyanidins)廣泛分布在植物中,屬于黃酮類化合物,是各種蔬菜和水果呈現(xiàn)藍(lán)色、紫色、紅色和橙色的天然水溶性色素。自然條件下游離狀態(tài)的花青素較少,主要與單糖結(jié)合形成花色苷(anthoyanins)。近年來(lái),研究發(fā)現(xiàn)花青素對(duì)乳腺癌具有一定的防治作用,體內(nèi)外試驗(yàn)顯示花青素能降低乳腺癌細(xì)胞的增殖能力以及抑制腫瘤形成,降低實(shí)驗(yàn)動(dòng)物對(duì)致癌物的易感性[1]、阻斷乳腺癌致癌物-DNA加合物的形成[2]、下調(diào)人乳腺癌細(xì)胞中雌激素受體水平[3]、抑制乳腺癌細(xì)胞侵襲能力[4,5],促進(jìn)乳腺癌細(xì)胞凋亡[6]。
花青素基本結(jié)構(gòu)為3,5,7-三羥基-2-苯基苯并吡喃(圖1)。文獻(xiàn)報(bào)道的花青素種類已超過(guò)500種,常見(jiàn)的花青素有6種(表1):矢車菊素(cyanidin)、芍 藥 色 素 (peonidin)、天 竺 葵 素(pelargonidin)、牽牛花色素(petunidin)、飛燕草色素(delphinidin)和錦葵色素(malvidin)。自然狀態(tài)下,花青素不穩(wěn)定,往往以糖苷鍵形式與葡萄糖、鼠李糖、半乳糖、木糖和阿拉伯糖等單糖形成花色苷。

花青素廣泛存在于植物中,含花青素較高的植物有紫甘藍(lán)、紫甘薯、酸果蔓、紅莓、草莓、葡萄(葡萄皮、葡萄籽)、紅醋栗、黑醋栗、櫻桃、蔓越莓、藍(lán)莓(越橘)、桑椹、茄子皮、山楂皮、接骨木紅、黑加侖、紫胡蘿和紅甘藍(lán)等呈現(xiàn)紅色、紫色、紫紅色或藍(lán)色的蔬菜、水果以及漿果。膳食中花青素的主要來(lái)源是紅色水果和蔬菜,如紅莓、葡萄、紅甘藍(lán)等,人均花青素?cái)z入量約3~215mg/d[7-10]。

表1 食品中常見(jiàn)的花青素Tab.1 The familiar anthocyanidins of food
介導(dǎo)細(xì)胞凋亡的信號(hào)途徑主要有胞外信號(hào)激活的死亡受體途徑(death receptor pathway)和胞內(nèi)信號(hào)激活的線粒體途徑(mitochondrial pathway),線粒體內(nèi)含有多種啟動(dòng)細(xì)胞凋亡的凋亡蛋白酶caspases[11]。Hui等[12]以乳腺癌細(xì)胞為對(duì)象,研究發(fā)現(xiàn)黑米花青素能促進(jìn)多聚ADP核糖聚合酶(poly ADP-ribose polymerase,PARP)裂解,誘導(dǎo)線粒體膜電位去極化,促進(jìn)線粒體內(nèi)的細(xì)胞色素C進(jìn)入細(xì)胞質(zhì),進(jìn)而級(jí)聯(lián)激活位于細(xì)胞質(zhì)中的Caspases家族,誘導(dǎo)細(xì)胞凋亡。Afaq等[13]用蔬菜水果中的飛燕草素作用于乳腺癌AU-565細(xì)胞,發(fā)現(xiàn)PARP蛋白斷裂,激活Caspase-3,下調(diào)B細(xì)胞淋巴瘤因子表達(dá),誘導(dǎo)細(xì)胞凋亡。紅酒中富含的花青素能使乳腺癌MCF-7細(xì)胞形態(tài)發(fā)生變化,而對(duì)正常乳腺上皮HMEC細(xì)胞和永生化的 MCF-10A細(xì)胞的生長(zhǎng)無(wú)影響,紅酒花青素可能通過(guò)抑制鈣及鈣調(diào)蛋白對(duì)磷酸二酯酶的激活,干擾鈣的第二信使作用,促進(jìn)乳腺癌細(xì)胞凋亡[14]。Liya等[15]也發(fā)現(xiàn)玫瑰果花青素對(duì)乳腺癌 MCF-7aro細(xì)胞和 MDA-MB-231細(xì)胞有促凋亡作用,對(duì)正常乳腺M(fèi)CF-10A細(xì)胞生長(zhǎng)無(wú)明顯影響。但有關(guān)花青素的這種腫瘤細(xì)胞選擇性作用的機(jī)制研究未見(jiàn)文獻(xiàn)報(bào)道。
核因子κB(nuclear factor-κB,NF-κB)能通過(guò)轉(zhuǎn)錄調(diào)節(jié)多種凋亡基因及信號(hào)通路而抑制細(xì)胞凋亡。將富含花青素的多種果實(shí)提取液作用于不同的腫瘤細(xì)胞株,發(fā)現(xiàn)藍(lán)莓汁能抑制TNF誘導(dǎo)的NF-κB表達(dá)[16]。Syed等[17]用飛燕草素作用于 MCF-10A 細(xì)胞,再暴露于內(nèi)源性肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF),發(fā)現(xiàn) HCG介導(dǎo)的 NF-κB活性受到抑制,飛燕草素通過(guò)抑制IKKα/β和IκBα的磷酸化,進(jìn)而抑制 NF-κB/p65的活性,同時(shí)還抑制HAG介導(dǎo)的PKCα膜轉(zhuǎn)運(yùn)以及降低STAT3磷酸化。
Boivin等[16]發(fā)現(xiàn)越橘花青素能下調(diào)腫瘤細(xì)胞周期蛋白Dl、D2和細(xì)胞周期依賴激酶4(cell dependent kinase 4,CDK4)、CDK6的表達(dá),阻止細(xì)胞從G1期進(jìn)入S期,對(duì)細(xì)胞周期進(jìn)程具有阻遏作用。Nguyen等[18]發(fā)現(xiàn)越橘花青素以濃度依賴方式誘導(dǎo)人乳腺癌細(xì)胞株 MCF-7凋亡,誘導(dǎo)50%腫瘤細(xì)胞凋亡的濃度為0.3~0.4mg/ml,且在該濃度范圍內(nèi),越橘花青素抑制腫瘤細(xì)胞周期方面沒(méi)有選擇性。但花青素的作用濃度達(dá)到0.5~0.9mg/ml時(shí),能改變G(2)/M期細(xì)胞數(shù)量,原因可能是花青素促進(jìn)了胞內(nèi)微管破壞,阻礙點(diǎn)狀微管蛋白的聚合。
表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)和c-erbB2在大多數(shù)乳腺癌細(xì)胞的胞膜上呈高表達(dá)。EGFR是原癌基因cerbB1的表達(dá)產(chǎn)物,通過(guò)與配體結(jié)合后激活下游的增殖信號(hào)通路,在乳腺癌細(xì)胞中EGFR過(guò)度表達(dá)促進(jìn)乳腺癌細(xì)胞轉(zhuǎn)移和侵襲。EGFR信號(hào)通路有3條:①ras/raf/MAPK 通 路;② PI3K/PDK1/AKT(PKB)通路;③JAK/STAT通路。在乳腺癌細(xì)胞侵襲轉(zhuǎn)移過(guò)程中,這些信號(hào)轉(zhuǎn)導(dǎo)通路啟動(dòng)細(xì)胞外基質(zhì)的降解,在腫瘤細(xì)胞侵襲轉(zhuǎn)移過(guò)程中發(fā)揮重要作用[19]。已有研究發(fā)現(xiàn),矢車菊素、飛燕草色素、錦葵色素等花青素和花色苷對(duì)EGFR信號(hào)的3條通路均有不同程度的抑制作用[20]。飛燕草素能抑制人EGFR陽(yáng)性乳腺癌AU-565細(xì)胞內(nèi)EGF誘導(dǎo)的EGFR表達(dá),抑制MAPK自磷酸化和PI3K激活,降低腫瘤細(xì)胞侵襲能力[13]。在ErbB2過(guò)表達(dá)的乳腺癌 MDAMB-453細(xì)胞內(nèi),矢車菊素-3-葡萄糖苷能阻礙乙醇誘導(dǎo)的ErbB2/cSrc/FAK通路,抑制腫瘤細(xì)胞的轉(zhuǎn)移和侵襲[21]。值得注意的是,花青素B環(huán)上不同的取代基將影響不同的生長(zhǎng)調(diào)節(jié)信號(hào)通路,例如錦葵色素B環(huán)上3'和5'上-OCH3取代基能抑制cAMP水解,阻斷 MAPK信號(hào)通路[22]。
尿激酶型纖溶酶原激活物(urokinase plasminogen activator,uPA)與尿激酶型纖溶酶原激活物受體(uPAR)結(jié)合后,可激活纖溶酶系統(tǒng),降解細(xì)胞外基質(zhì)和基底膜,使腫瘤細(xì)胞能穿透正常組織屏障,有利于腫瘤的侵襲和轉(zhuǎn)移。同時(shí)還可引起腫瘤細(xì)胞骨架重塑、形態(tài)改變、特異性角蛋白磷酸化等,這都與腫瘤的生長(zhǎng)、侵襲和轉(zhuǎn)移關(guān)系密切。課題組對(duì)培養(yǎng)的 HER-2/neu高表達(dá)人乳腺癌 MDAMB-453細(xì)胞研究發(fā)現(xiàn),黑米花青素能c-erbB2信號(hào)途徑,顯著降低胞內(nèi)uPA的表達(dá)水平[23]。
HGF是間質(zhì)細(xì)胞分泌的一種分泌型親和糖蛋白,能促進(jìn)正常細(xì)胞和腫瘤細(xì)胞的移動(dòng)。HGF與其受體C-Met結(jié)合后,激活酪氨酸激酶活性,可促進(jìn)腫瘤細(xì)胞有絲分裂和遷移。飛燕草素能抑制MCF-10A細(xì)胞內(nèi)HGF介導(dǎo)的酪氨酸蛋白質(zhì)的磷酸化,降低乳腺癌細(xì)胞Met受體的表達(dá)[24],下調(diào)FAK和Src的磷酸化,進(jìn)而阻斷 HGF激活的Ras-ERK/MAPKs 和 PI3K/AKT/mTOR/p70S6K 信 號(hào)通路[25]。
血管生成(angiogenesis)是惡性腫瘤的無(wú)限制侵襲性生長(zhǎng)及其轉(zhuǎn)移的基礎(chǔ)。基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)是降解細(xì)胞外基質(zhì)最重要的一類蛋白水解酶,能促進(jìn)血管生成。MMPs抑制劑(TIMPs)抑制腫瘤血管生成和腫瘤細(xì)胞轉(zhuǎn)移。本課題組將MDA-MB-453細(xì)胞異種移植到BALB/c裸鼠,建立 HER-2高表達(dá)乳腺癌移植瘤模型,觀察了黑米花青素對(duì)移植瘤血管生成的影響,結(jié)果發(fā)現(xiàn)黑米花青素能降低移植瘤組織微血管密度和促血管生成因子 MMP-2/-9和uPA的表達(dá)水平,提示黑米花青素通過(guò)抑制移植瘤內(nèi)血管生成而抑制乳腺癌的生長(zhǎng)[23]。
另有研究報(bào)道,藍(lán)莓花青素抑制TNF誘導(dǎo)的環(huán)氧化酶(cyclooxygenase,COX-2)表達(dá),COX-2在腫瘤和腫瘤形成過(guò)程中基質(zhì)細(xì)胞內(nèi)呈高表達(dá)[25],在乳腺細(xì)胞癌變的情況下可調(diào)節(jié)信號(hào)分子表達(dá),通過(guò)促血管生成因子調(diào)節(jié)血管新生,促進(jìn)腫瘤形成和炎性轉(zhuǎn)移[26]。此外,雌激素和雌激素受體在腫瘤發(fā)生發(fā)展中起重要作用,ER-α陽(yáng)性乳腺癌對(duì)化療藥物敏感性 低[27]。Fernandes等[28]和 Schmitt等[29]研 究發(fā) 現(xiàn),Cy-3-gluc 和 飛 燕 草-3-葡 萄 糖 苷 花 青 素(delphinidin-3-glucoside,Dp-3-gluc)能抑制 MCF-7細(xì)胞生長(zhǎng),降低雌激素受體表達(dá)水平。
PTK是乳腺組織細(xì)胞的信號(hào)傳導(dǎo)中起關(guān)鍵作用的一種調(diào)節(jié)蛋白質(zhì),對(duì)細(xì)胞增殖、分化及免疫系統(tǒng)的細(xì)胞信號(hào)傳導(dǎo)具有調(diào)節(jié)作用,PTK高表達(dá)可造成細(xì)胞信號(hào)傳導(dǎo)通路中信號(hào)轉(zhuǎn)導(dǎo)失控,激活其下游信號(hào)通路,從而引起細(xì)胞轉(zhuǎn)化、增殖、抗凋亡等作用,導(dǎo)致腫瘤快速生長(zhǎng)而惡化。PTK參與的信號(hào)轉(zhuǎn)導(dǎo)途徑主要包 Ras/Raf/MAPK 途徑、PI-3K/AKT 途徑和nrTKs的JAK/STAT等。小分子EGFR酪氨酸激酶抑制劑tyrphostinAG1478能阻斷 MCF-7(EGFR-/+)以及 MDA-MB-468(EGFR+/+)乳腺癌細(xì)胞PI3K/Akt及Ras/Raf/MAPK信號(hào)轉(zhuǎn)導(dǎo)通路[30]。眾多研究顯示,花青素在抗乳腺癌方面具有與tyrphostinAG1478類似的作用機(jī)制[13,20-22]。
HER-2/neu基因(c-erbB2)編碼的蛋白為一跨膜PTK膜受體,屬EGFR成員,具有內(nèi)在的PTK活性,HER-2/neu過(guò)度表達(dá)能提高uPA的表達(dá)水平[31]。uPAR至少能激活兩個(gè)不同的信號(hào)通路:Jak/Stat和 PTK 介 導(dǎo) 的 信 號(hào) 傳 導(dǎo) 通 路[32]。Aguirre等研究證實(shí)乳腺癌的uPA的表達(dá)調(diào)節(jié)依賴于PTK信號(hào)轉(zhuǎn)導(dǎo)通路,抑制PTK活性可降低uPA的表達(dá)和分泌[33]。課題組研究發(fā)現(xiàn)黑米花青素降低乳腺癌 MDA-MB-453細(xì)胞uPA的表達(dá)水平與PTK 通路有關(guān)[23]。
綜上所述,有關(guān)花青素對(duì)乳腺癌的防治作用研究主要以不同類型的乳腺癌細(xì)胞為對(duì)象,圍繞誘導(dǎo)乳腺癌細(xì)胞凋亡、抑制生長(zhǎng)增殖、血管生成以及侵襲轉(zhuǎn)移、靶向作用于PTK等方面展開(kāi)研究,而體內(nèi)報(bào)道較少,特別是涉及乳腺癌患者的人群研究以及大樣本的流行病學(xué)調(diào)查,勢(shì)必成為今后花青素抗乳腺癌研究的重點(diǎn)領(lǐng)域。
[1]Jung KJ,Wallig MA,Singletary KW.Purple grape juice inhibits 7,12-dimethylbenz[a]anthracene(DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation[J].Cancer Lett,2006,233(2):279-288.
[2]Singletary KW,Jung KJ,Giusti M,et al.Anthocyanin-rich grape extract blocks breast cell DNA damage[J].J Med Food,2007,10(2):244-251.
[3]Fernandes I,F(xiàn)aria A,Azevedo J,et al.Influence of anthocyanins,derivative pigments and other catechol and pyrogallol-type phenolics on breast cancer cell proliferation[J].J Agric Food Chem,2010,58(6):3785-3792.
[4]Zhang Y,Vareed SK,Nair MG.Human tumor cell growth inhibition by nontoxic anthocyanidins,the pigments in fruits and vegetables[J].Life Sci,2005,76(13):1465-1472.
[5]Faria A,Pestana D,Teixeira D,et al.Blueberry anthocyanins and pyruvic acid adducts:anticancer properties in breast cancer cell lines[J].Phytother Res,2010,24(12):1862-1869.
[6]Seeram NP,Adams LS,Zhang Y,et al.Blackberry,black raspberry, blueberry, cranberry,red raspberry,and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro[J].J Agric Food Chem,2006,54(25):9329-9339.
[7]Wu XL,Beecher GR,Holden JM,et al.Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption[J].J Agric Food Chem,2006,54(11):4069-4075.
[8]Frankel EN,Waterhouse AL,Teissedre PL.Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human lowdensity lipoproteins[J].J Agric Food Chem,1995,43(16):890-894.
[9]Kuhnau J.The flavonoids.A class of semi-essential food components:their role in human nutrition[J].World Rev Nutr Dietet,1976,24:117-191.
[10]Chun OK,Chung SJ,Song WO.Estimated dietary flavonoid intake and major food sources of U.S.adults[J].J Nutr,2007,137(5):1244-1252.
[11]Newmeyer DD,F(xiàn)erguson-Millers.Mitochondria:releasing power for life and unleashing the machineries of death[J].Cell,2003,112(4):481-490.
[12]Hui C,Bin Y,Xiaoping Y,et al.anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo[J].Nutr Cancer,2010,62(8):1128-1136.
[13]Afaq F,Zaman N,Khan N,et al.Inhibition of epidermal growth factor receptor signaling pathway by delphinidin,an anthocyanidin in pigmented fruits and vegetables[J].Int J Cancer,2008,123(7):1508-1515.
[14]Hakimuddin F,Paliyath G,Meckling K.Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7cells[J].Breast Cancer Res Treat,2004,85(1):65-79.
[15]Liya Li,Lynn S.Adams SC,et al.Eugenia jambolana lam.berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells[J].J Agric Food Chem,2009,57(3):826-831.
[16]Boivin D,Blanchette M,Barrette S,et al.Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NF-kappaB by edible berry juice[J].Anticancer Res,2007,27(2):937-948.
[17]Syed DN,Afaq F,Sarfaraz S,et al.Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation[J].Toxicol Appl Pharmacol,2008,231(1):52-60.
[18]Nguyen V,Tang J,Oroudjev E,et al.Cytotoxic effects of bilberry extract on MCF7-GFP-tubulin breast cancer cells[J].J Med Food,2010,13(2):278-285.
[19]Byun HJ,Hong IK,Kim E,et al.A splice variant of CD99 increases motility and MMP-9expression of human breast cancer cells through the AKT-,ERK-,and JNK-dependent AP-1activation signaling pathways[J].J Biol Chem,2006,281(46):34833-34847.
[20]Teller N,Thiele W,Boettler U,et al.Delphinidin inhibits a broad spectrum of receptor tyrosine kinases of the ErbB and VEGFR family[J].Mol Nutr Food Res,2009,53(9):1075-1083.
[21]Mei Xu,Kimberly AB,Siying W,et al.Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2[J].Molecular cancer,2010,9:285.
[22]Marko D,Puppel N,Tjaden Z,et al.The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation[J].Mol Nutr Food Res,2004,48(4):318-325.
[23]于斌,余小平,易龍,等.黑米花青素對(duì) HER-2/neu高表達(dá)人乳腺癌細(xì)胞株 MDA-MB-453移植瘤血管生成的影響[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2009,31(22):2206-2209.
[24]Syed DN,Afaq F,Sarfaraz S,et al.Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation[J].Toxicol Appl Pharmacol,2008,231(1):52-60.
[25]Khan Z,Khan N,Tiwari RP,et al.Biology of Cox-2:an application in cancer therapeutics[J].Curr Drug Targets,2011,12(7):1082-1093.
[26]Harris RE.Cyclooxygenase-2 (cox-2)blockade in the chemoprevention of cancers of the colon,breast,prostate,and lung[J].Inflammopharmacology,2009,17(2):55-67.
[27]Sui M,Zhang H,F(xiàn)an W.The role of estrogen and estrogen receptors in chemoresistance[J].Curr Med Chem,2011,25.[Epub ahead of print]
[28]Fernandes I,F(xiàn)aria A,Azevedo J,et al.Influence of anthocyanins,derivative pigments and other catechol and pyrogallol-type phenolics on breast cancer cell proliferation[J].J Agric Food Chem,2010,58(6):3785-3792.
[29]Schmitt E,Stopper H.Estrogenic activity of naturally occurring anthocyanidins[J].Nutr Cancer,2001,41(1-2):145-149.
[30]李萍,傅深,章青,等.酪氨酸激酶抑制劑tyrphostin AG1478對(duì)乳腺癌作用的機(jī)制探討[J].腫瘤,2010,30(6):481-485.
[31]AIlgayer H,Babic R,Gruetzner KU,et al.c-erbB-2is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems[J].J Clin Oncol,2000,18(11):2201-2209.
[32]Dumler I,Weis A,Mayboroda OA,et al.The Jak/Stat pathway and urokinase receptor signaling in human aortic vascular smooth muscle cells[J].J Biol Chem,1998,273(1):315-321.
[33]Aguirre Ghiso JA,Estrada Y,Liu D,et al.ERK(MAPK)activity as a determinant of tumor growth and dormancy:regulation by p38(SAPK)[J].Cancer Res,2003,63(7):1684-1695.