李 康 胡大繩
(西安電子工程研究所 西安 710100)
相位干涉儀被廣泛應用于目標信號到達方向角(DOA)的估計領域,它具有精度高、結構簡單等優點。最簡單的二維相位干涉儀由處于兩條正交基線上的四個接收陣元和兩個比相器構成,利用相位干涉法進行測角定向。在高精度定向系統中,安裝及加工偏差會導致測量結果產生誤差,甚至達不到系統設計要求,而一味追求高指標會增加工程難度,因此在設計階段如何合理確定加工安裝的指標尤為重要。
相位干涉法測角即通過測量目標輻射的信號到達基線兩端相位差來確定DOA。
如圖1,當目標輻射信號頻率為f,且目標距離測量基線AB足夠遠時,有:

圖1 相位干涉法測角原理圖

聯立求解,有下式成立:

式(3)為相位干涉法測角運算模型,其中c為電磁波在空氣中的傳播速度;d為基線長度。
對于十字型天線布陣結構的兩維測角系統,如果測量坐標系采用地面球坐標系,其相應布陣結構示意圖如圖2所示。

圖2 十字型布陣結構示意圖
其中,目標與十字中心O連線稱為目標輻射線,高低角為目標輻射線與水平面(COE平面)的夾角,方位角為目標輻射線在水平面上投影與OE射線的夾角。為了討論方便,定義水平面內高低角為0°,在OA一側為正,AOE面為方位角0°面,以AB為軸,順時轉動為正。
對應的測角模型為:

這里α和β分別對應相應的高低角和方位角,d為對應的基線長度。
可見,在十字型二維定向系統中,高低角的測量影響方位角的測量。由于在不同天線布陣系統中,很難給出通用的、準確的誤差分析算法,所以其后的分析都是建立在圖2所示的十字型天線布陣測角系統中的(見圖3、圖4、圖5)。



在實際工程設計階段,對相位測量抖動,頻率偏移和相位標定的仿真測試工作通常會進行的比較充分,而且有很多參考資料可以借鑒。本文重點在加工安裝的偏差影響,加工安裝偏差一般較小,其具體影響測量系統方位基線不水平度和高低基線不垂直度。
為方便分析,有如下規定:
a.分析的誤差全部是指測量值減真值;
b.設定ξ為加工安裝偏差(角度),Δl為長度偏差(實際值減設計值);
c.α、Δα為實際目標高低角和高低角偏差,β、Δβ為實際目標方位角和方位角偏差,d為設計基線長;
d.有下標的參量,下標定義參考c中規定,下標規定該參量屬于何類別。如,dα表示高低角參數測量運算所用基線長度(設計長度)。
一般來說工程加工基線誤差極小,影響基本可以忽略,但是在其它影響因素中會用到該誤差分析值,所以在此處進行分析。由式(3)可得出

其中,θ為目標實際DOA值,Δθ為測量誤差。
推廣到十字型天線布陣系統,由式(4)可得誤差公式為:

參考圖2,將高低基線垂直度問題主要分為以下兩種情況:高低基線在方位零位面(AOE面)內和高低基線在方位90°面(AOD面)內。
當高低基線在方位90°面(AOD面)內時,準確分析比較復雜。但當偏差較小時(2mil以內),可以得到誤差近似公式:

同樣,當高低基線在方位90°面(AOD面)內,且偏差較小時,得到誤差近似公式:

方位基線水平度主要是指,CD基線不在測量坐標系的水平基準面內,參考圖2即COE平面不在水平面內。
同樣,當偏差較小時(2mil以內),可以得到誤差近似公式:

一般情況下,機械加工保證的基線長度誤差小于0.1mm/m,影響基本可以忽略。如果產生的測量誤差較大時,通常情況下首先考慮是否由其它因素造成的。
影響基線長度變化的因素包括天線系統硬件結構變形、材料溫度變化系數大等,其中對基線的影響最大的因素是在天線安裝過程中基線兩端幾何中心與信號接收中心(天線相位中心)不一致。
為驗證誤差分析的近似算法是否符合真實誤差,對系統誤差進行仿真。假定目標距離天線系統中心O的距離為 R,為方便計算,假定信號頻率100MHz,高低基線、方位基線長度均為1m,距離R為1000m,加工安裝偏差2mil。建立如下仿真模型:
a.高低基線在方位零位面(AOE面)內不垂直的誤差模型:

以上通過(1)、(2)、(4)式計算,經 MATLAB仿真,得到圖6、圖7。


b.高低基線在方位90°面(AOD面)內不垂直的誤差模型


圖8 高低基線在AOD面內不垂直(偏差2mil)引起的高低角測量誤差仿真圖
以上通過(1)、(2)、(4)式計算,經MATLAB仿真,得到圖8、圖9。

圖9 高低基線在AOD面內不垂直(偏差2mil)引起的方位角測量誤差仿真圖
c.方位基線不水平的誤差模型

以上通過(1)、(2)、(4)式計算,經 MATLAB仿真,得到圖10。

圖10 方位基線不水平(偏差2mil)引起的方位角測量誤差仿真圖
誤差分析中的近似算法與仿真分析結果相近,結果最大偏差不大于10-2mil,所以該算法符合真實誤差,可以用于加工安裝偏差較小情況下的誤差快速分析。
a.上述分析建立在一定加工安裝精度條件下,即加工安裝偏差較小時成立;如加工安裝偏差較大,角度測量誤差確定需要另行建模分析。
b.由于實際工程中加工安裝偏差不可避免,所以在系統設計階段的誤差分配當中,需要適當考慮加工安裝偏差帶來的測角誤差。
c.在確定加工安裝指標要求時,可在系統角度測量范圍內選取幾個最大測量誤差點進行仿真分析,確定加工安裝偏差帶來的測角誤差滿足設計要求。
本文在對十字型相位干涉法測角模型分析的基礎上,在MATLAB仿真平臺上進行了加工安裝偏差對系統測量影響的分析研究,給出了相應的近似算法。該算法已經在某項目中使用,實際結果與理論分析一致,在該項目天線系統的加工安裝中起到了重要作用。該近似算法對相同天線布陣系統的設計也有一定的借鑒意義。
[1]龔享銥,袁俊泉等.基于參差距離的相位差變化值的解模糊方法研究[J].信號處理,2003,19(4):308-311.
[2]楊小牛.軟件無線電原理與應用[M].北京:電子工業出版社,北京,2001.
[3]胡來招.雷達偵查接收機設計[M].北京:國防工業出版社,北京,2001.
[4]趙國慶.雷達對抗原理[M].西安:西安電子科技大學出版社,1999.
[5]劉波.Matlab信號處理[M].北京:電子工業出版社,2006.