摘要:伺服系統是以機械運動的驅動設備,電動機為控制對象,以控制器為核心,以電力電子功率變換裝置為執行機構,在自動控制理論的指導下組成的電氣傳動自動控制系統。本文從進給伺服系統的發展歷程中產生的兩種伺服系統為著眼點,對兩種伺服系統控制基本原理和使用特點進行對比,闡述其在數控機床控制精度及發展方面所起的重要作用。
關鍵詞:數控系統;步進電機;交直流伺服電機;直線電機;控制
一、概述
伺服系統是以機械運動的驅動設備,電動機為控制對象,以控制器為核心,以電力電子功率變換裝置為執行機構,在自動控制理論的指導下組成的電氣傳動自動控制系統。具體在數控機床中,伺服系統接收數控系統發出的位移、速度指令,經變換、放調與整大后,由電動機和機械傳動機構驅動機床坐標軸、主軸等,帶動工作臺及刀架,通過軸的聯動使刀具相對工件產生各種復雜的機械運動,從而加工出用戶所需要的形狀復雜的工件。作為數控機床的執行機構,伺服系統將電力電子器件、控制、驅動及保護等集為一體,并隨著數字脈寬調制技術、特種電機材料技術、微電子技術及現代控制技術的進步,經歷了從步進到直流,進而到交流的發展歷程。
二、伺服系統結構及分類
從基本結構來看,伺服系統主要由三部分組成:控制器、功率驅動裝置、反饋裝置和電動機(見下圖)??刂破靼凑諗悼叵到y的給定值和通過反饋裝置檢測的實際運行值的差,調節控制量;功率驅動裝置作為系統的主回路,一方面按控制量的大小將電網中的電能作用到電動機之上,調節電動機轉矩的大小,另一方面按電動機的要求把恒壓恒頻的電網供電轉換為電動機所需的交流電或直流電;電動機則按供電大小拖動機械運轉。

圖1中的主要成分變化多樣,其中任何部分的變化都可構成不同種類的伺服系統。如根據驅動電動機的類型,可將其分為步進電機系統和交直流伺服系統。其中,步進電機是一種離散運動的裝置,它和現代數字控制技術有著本質的聯系。在目前國內的數字控制系統中,步進電機的應用十分廣泛。隨著全數字式交流伺服系統的出現,交流伺服電機也越來越多地應用于數字控制系統中。為了適應數字控制的發展趨勢,運動控制系統中大多采用步進電機或全數字式交流伺服電機作為執行電動機。
三、步進電機系統與交直流伺服系統的比較
進給伺服以數控機床的各坐標為控制對象,產生機床的切削進給運動。為此,要求進給伺服能快速調節坐標軸的運動速度,并能精確地進行位置控制。具體要求為調速范圍寬、位移精度高、穩定性好、動態響應快。雖然兩者在控制方式上相似(脈沖串和方向信號),但在使用性能和應用場合上存在著較大的差異,現就二者的使用性能在這些方面做一比較。
1.控制精度不同。兩相混合式步進電機步距角一般為3.6°、1.8°,五相混合式步進電機步距角一般為0.72°、0.36°。也有一些高性能的步進電機步距角更小。如四通公司生產的一種用于慢走絲機床的步進電機,其步距角為0.09°;德國百格拉公司(BERGERLAHR)生產的三相混合式步進電機其步距角可通過撥碼開關設為1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了兩相和五相混合式步進電機的步距角。交流伺服電機的控制精度由電機軸后端的旋轉編碼器保證。以松下全數字式交流伺服電機為例,對于帶標準2500線編碼器的電機而言,由于驅動器內部采用了四倍頻技術,其脈沖當量為360°/10000=0.036°。對于帶17位編碼器的電機而言,驅動器每接收131072個脈沖電機轉一圈,即其脈沖當量為360°/131072=9.89秒。是步距角為1.8°的步進電機的脈沖當量的1/655。
2.低頻特性不同。步進電機在低速時易出現低頻振動現象。振動頻率與負載情況和驅動器性能有關,一般認為振動頻率為電機空載起跳頻率的一半。這種由步進電機的工作原理所決定的低頻振動現象對于機器的正常運轉非常不利。當步進電機工作在低速時,一般應采用阻尼技術來克服低頻振動現象,比如在電機上加阻尼器,或驅動器上采用細分技術等。
交流伺服電機運轉非常平穩,即使在低速時也不會出現振動現象。交流伺服系統具有共振抑制功能,可涵蓋機械的剛性不足,并且系統內部具有頻率解析機能(FFT),可檢測出機械的共振點,便于系統調整。3.矩頻特性不同。步進電機的輸出力矩隨轉速升高而下降,且在較高轉速時會急劇下降,所以其最高工作轉速一般在300~600RPM。交流伺服電機為恒力矩輸出,即在其額定轉速(一般為2000RPM或3000RPM)以內,都能輸出額定轉矩,在額定轉速以上為恒功率輸出。
3.過載能力不同。步進電機一般不具有過載能力。交流伺服電機具有較強的過載能力。以松下交流伺服系統為例,它具有速度過載和轉矩過載能力。其最大轉矩為額定轉矩的三倍,可用于克服慣性負載在啟動瞬間的慣性力矩。步進電機因為沒有這種過載能力,在選型時為了克服這種慣性力矩,往往需要選取較大轉矩的電機,而機器在正常工作期間又不需要那么大的轉矩,便出現了力矩浪費的現象。
4.運行性能不同。步進電機的控制為開環控制,啟動頻率過高或負載過大易出現丟步或堵轉的現象,停止時轉速過高易出現過沖的現象。所以為保證其控制精度,應處理好升、降速問題。交流伺服驅動系統為閉環控制,驅動器可直接對電機編碼器反饋信號進行采樣,內部構成位置環和速度環,一般不會出現步進電機的丟步或過沖的現象,控制性能更為可靠。
四、速度響應性能不同
步進電機從靜止加速到工作轉速(一般為每分鐘幾百轉)需要200~400毫秒。交流伺服系統的加速性能較好,以松下MSMA400W交流伺服電機為例,從靜止加速到其額定轉速3000RPM僅需幾毫秒,可用于要求快速啟停的控制場合。
五、結語
綜上所述,交流伺服系統在許多性能方面都優于步進電機。但在一些要求不高的場合也經常用步進電機來做執行電動機。所以,在控制系統的設計過程中要綜合考慮控制要求、成本等多方面的因素,選用適當的控制電機。這是數控機床制造與發展的關鍵。
參考文獻:
[1]張寶林.數控機床技術應用[M].北京:高等教育出版社,2004,(2).
[2]董玉紅.數控機床技術[M].哈爾濱工業大學,2005,(6).
[3]田風桐.機電設備及其控制[M].北京:機械工業出版社,2001.