999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

線葉旋覆花的化學成分研究

2011-03-17 17:19:21聶利月金慧子覃江江張衛東
天然產物研究與開發 2011年4期
關鍵詞:上海研究

聶利月,金慧子,嚴 嵐,覃江江,張衛東,2*

1上海交通大學藥學院,上海200240;2第二軍醫大學藥學院,上海200433

Introduction

A number of plants in Inula genus are used as traditional herbal medicines to treat expectorant,anti-tussive,diaphoretic,and bactericidalthroughoutthe world.Recently,much attention has been paid to Inula genus due to their diverse biological activities,particularly in anti-tumor application[1].Actually,the investigation of the chemical constituents of Inula plants is the major course in our group,and many bioactive compounds have been reported[2,3].However,as far as Inula lineariifolia Turcz.is concerned,only a few compounds have been isolated from this plant[4].Herein,we report the isolation and elucidation of 13 compounds:eupatin(1),spinacetin(2),hispidulin(3), daucosterol(4),β-sitosterol(5),α-spinasterol(6),taraxasteryl acetate(7),(+)-syringaresinol(8),dehydrovomifoli(9),4-hydroxy-benzaldehyde(10),vanllin polymer(11),4-hydroxy-3,5-dimethoxybenzaldehyde(12),and 4-hydroxy-2,6-dimethoxybenzaldehyde (13).All compounds were isolated from I.lineariifolia for the first time.

Experimental

General procedures

Melting points were carried out on a RY-1 micro-melting point apparatus without correction.The ESIMS were recorded on Agilent-1100-LC/MSD-Trap(ESI-MS) and Agilent Micro-Q-Tof in m/z.NMR spectra were measured on a Bruker DRX-500 spectrometer with TMS as internal standard,operating at 500 MHz for1H and 125 MHz for13C chemical shift(δ)was given in ppm and coupling constants in Hz.Column chromatographies (CC)were performed on silica gel(200-300 mesh, Yantai,China)and sephadex LH-20(GE Healthcare Bio-Sciences AB,Sweden),and precoated silica GF254plates were used for TLC(Qingdao Haiyang Chemical Co.,Ltd.,China).

Plant material

The whole plants of I.lineariifolia Turcz.were collected in Changfeng County,Anhui Province,in late July 2007,and authenticated by Prof.Shou-Jin Liu(Anhui University of Traditional Chinese Medicine).A voucher specimen(No.XX20070701)is deposited in the School of Pharmacy,Shanghai Jiao Tong University.

Extraction and isolation

The air-dried and powdered aerial part of I.lineariifolia Turcz(60.0 kg)was extracted with 95%ethanol(3 ×10 L).Then the concentrated residue was suspended in H2O and partitioned with petroleum ether (PE),CHCl3,EtOAc,and n-BuOH successively.Part of PE extract(116.8 g from 1000.0 g)was subjected to silica CC eluting with a gradient of PE-EtOAc(100∶1-1∶2)to give 14 fractions(Fr.1-Fr.14)based on TLC analysis.Compounds 4(67.2 mg),5(25.2 mg),6(30.0 mg),and 7(25 mg)were separated from Fr.10,Fr.2,and Fr.1 respectively.Part of CHCl3extract(240 g from 600.0 g)was chromatographed over silica gel,eluting with increasing amounts of MeOH(0-100%)in CH2Cl2,to afford 11 fractions( F1-F11).Fractions F1,F4,and F5 were further subjected to sephadex LH-20 with MeOH as eluent to give the subfractions as follows:F1a-1d,F4a-4h,F5a-5f.The F1c,F4b,and F4i were further purified by preparative HPLC under MeOH-H2O system.F1c gave 10(2.8 mg),11(5.7 mg),12(8.3 mg),and 13(15.1 mg) by prep-HPLC with MeOH/H2O system(20%),F4i gave 9(2.6 mg)at MeOH/H2O(35%),and F4b gave 8(11.0 mg)at MeOH/H2O(45%).F5f was subjected to sephadex LH-20 eluted with MeOH repeatedly to yield 1(23.2 mg),2(40.5 mg),and 3(4.2 mg).

Structure identification

Compound 1 C18H16O8,yellow amorphous solid (MeOH),mp.206-209℃,ESI-MS(pos.)m/z 383.1[M+Na]+,ESI-MS(neg.)m/z 359.0[M– H]–;1H NMR(DMSO-d6+CDCl3,500 MHz)δ: 7.79(1H,d,J=1.5 Hz,H-6'),7.73(1H,dd,J= 8.5,1.5 Hz,H-2'),7.03(1H,d,J=1.5 Hz,H-5'),6.91(1H,s,H-8),4.04,4.00,3.91(3×3H,s,C-6,C-7,C-4'-OCH3);13C NMR(DMSO-d6+CDCl3,125 MHz)δ:150.5(C-2),138.8(C-3),179.3(C-4),150.2(C-5),131.2(C-6),156.9(C-7),91.4(C-8),155.2(C-9),106.6(C-10),123.2(C-1'),116.2(C-2'),147.2(C-3'),148.8(C-4'),112.6 (C-5'),122.3(C-6'),60.2(7-OCH3),56.7(7-OCH3),56.3(4'-OCH3).The NMR data was in accordance with those reported in the literature[5],and identified 1 as eupatin.

Compound 2 C17H14O8,yellow needles(MeOH),mp.122-124℃.ESI-MS(pos.)m/z 347.1[M+ H]+;ESI-MS(neg.)m/z 345.1[M-H]–;1H NMR (DMSO-d6,500 MHz)δ:12.37(1H,s,H-5),7.59 (1H,s,H-2'),7.47(1H,d,J=10.0 Hz,H-6'),6.91(1H,d,J=10.0 Hz,H-5'),6.83(1H,s,H-8),3.79,3.90(2×3H,s,C-6,C-3'-OCH3);13C NMR (DMSO-d6,125 MHz)δ:145.7(C-2),137.5(C-3),178.1(C-4),148.8(C-5),129.6(C-6),155.7 (C-7),90.8(C-8),154.5(C-9),105.5(C-10),121.0(C-1'),115.5(C-2'),145.2(C-3'),148.6 (C-4'),115.7(C-5'),120.5(C-6')56.3(3'-OCH3),59.6(6-OCH3).The NMR data was in accordance with those reported in the literature[5,6],and identified 2 as spinacetin.

Compound 3 C16H12O6,yellow amorphous solid (MeOH),mp.244-247℃,ESI-MS(neg.)m/z 299.1[M–H]–;1H NMR(DMSO-d6,500 MHz)δ: 3.75(3H,s,6-OCH3),6.59(1H,s,H-3),6.78 (1H,s,H-8),6.93(2H,d,J=10.0 Hz,H-3',5'),7.93(2H,d,J=10.0 Hz,H-2',6'),10.30(1H,s,4'-OH),10.70(1H,s,7-OH),13.10(1H,s,5-OH);13C NMR(DMSO-d6,125 MHz)δ:163.8(C-2),102.3(C-3),182.4(C-4),152.7(C-5),131.3 (C-6),157.3(C-7),94.2(C-8),152.4(C-9),104.0(C-10),121.2(C-1'),128.4(C-2'),115.9 (C-3'),161.1(C-4'),115.9(C-5'),128.4(C-6'),56.3(6-OCH3).The NMR data was in accordance with those reported in the literature[7,8],and identified 3 as hispidulin.

Compound 4 C35H60O6,white amorphous powder,mp.285-287℃,ESI-MS m/z 599.6[M+Na]+.TLC behavior was in accordance with that of authentic daucosterol when eluted with different developing solvents.Thus,compound 4 was determined as daucosterol.

Compound 5 C29H50O,white needles(MeOH); mp.139-140℃;ESI-MS m/z 437.4[M+Na]+;13C NMR(CDCl3,125 MHz)δ:37.3(C-1),31.7(C-2),71.8(C-3),42.3(C-4),140.8(C-5),121.7 (C-6),31.7(C-7),31.9(C-8),50.2(C-9),36.5 (C-10),21.1(C-11),39.8(C-12),42.3(C-13),56.8(C-14),24.3(C-15),28.2(C-16),56.1(C-17),11.9(C-18),19.1(C-19),36.1(C-20),18.8 (C-21),34.0(C-22),26.1(C-23),45.9(C-24),29.2(C-25),19.8(C-26),19.4(C-27),23.1(C-28),12.0(C-29).The above data were in accordance with those reported in the lierature[9].Therefore,compound 5 was identified as β-sitosterol.

Compound 6 C29H48O,white needle crystal (CH2Cl2),mp.160-162℃;ESI-MS m/z 413[M+ H]+.Compound 6 showed the same color and equal Rfvalue with standard substance of α-spinasterol when applied on TLC and eluted with different developing solvents.So compound 6 was characterized as α-spinasterol.

Compound 7 C32H52O2,white lamellar solid(PE),mp.237-239℃,ESI-MS(neg.)m/z 935.5[2M–H]–;1H NMR(CDCl3,500 MHz)δ:4.62(2H,m,H-30),4.48(1H,dd,J=12.5,3.0 Hz),2.04(3H,s,CH3CO),1,01(3H,d,J=8.5 Hz,H-29),1.00 (3H,s,H-26),0.90(3H,s,H-27),0.85(3H,s,H-23),0.82(3H,s,H-25),0.82(3H,s,H-25),0.82 (3H,s,H-28),0.81(3H,s,H-24);13C NMR (CDCl3,125 MHz)δ:38.5(C-1),26.7(C-2),81.0 (C-3),37.8(C-4),55.5(C-5),18.2(C-6),34.0 (C-7),40.9(C-8),50.4(C-9),37.1(C-10),21.5 (C-11),25.6(C-12),39.2(C-13),42.0(C-14),26.2(C-15),38.3(C-16),34.5(C-17),48.7(C-18),39.4(C-19),154.6(C-20),23.7(C-21),38.9(C-22),27.9(C-23),15.9(C-24),16.3(C-25),16.5(C-26),14.7(C-27),19.5(C-28),107.1(C-29),25.4(C-30),171.0(CH3CO),21.3 (CH3CO).The NMR data was in accordance with those reported in the literature[10],and identified 7 as taraxasteryl acetate.

Compound 8 C22H26O8,white powder(MeOH),mp.118-120℃,ESI-MS(pos.)m/z 441.2[M+ Na]+;1H NMR(CDCl3,500 MHz)δ:6.58(4H,s,H-2,H-8,H-2',H-8'),4.73(2H,d,J=3.75 Hz,H-7,H-7'),4.27(2H,m,He-9,He-9'),3.92(2H,m,Ha-9,Ha-9'),3.89(12H,s,4×OCH3),3.09(2H,m,H-8,H-8');13C NMR(CDCl3,125 MHz)δ:132.1 (C-1,C-1'),102.7(C-2,C-2'),147.1(C-3,C-3'),134.3(C-4,C-4'),86.1(C-7,C-7'),71.8(C-9,C-9'),56.4(4×OCH3),54.3(C-8,C-8').The spectral data was identical with those reported in the literature[11],and 8 was determined as(+)-syringaresinol.

Compound 9 C13H18O3,light yellow gum(MeOH),ESI-MS(pos.)m/z 245.1[M+Na]+;1H NMR (CDCl3,500 MHz)δ:1.01,1.09(each 3H,each s,H3-1,H3-2),1.89(3H,d,J=1.5 Hz,H-5),2.31 (3H,s,H-9),5.96(1H,s,H-4),6.47(1H,d,J= 15.5 Hz,H-8),6.82(1H,d,J=15.5 Hz,H-7);13C NMR(CDCl3,125 MHz)δ:41.4(C-1),49.6(C-2),196.9(C-3),144.9(C-4),160.2(C-5),79.3 (C-6),127.8(C-7),130.4(C-8),197.3(C-9),18.6(C-10),22.9(C-11),24.32(C-12),28.4(C-13).The spectral data was identical with those reported in the literature[12,13],and identified as dehydrovomifoli.

Compound 10 C7H6O2,colorless oil(CH2Cl2),ESIMS m/z 245.3[2M+H]+;121.1[M– H]–;1H NMR(CDCl3,500 MHz)δ:9.61(1H,m,H-1),7.68 (2H,d,J=9.0 Hz,H-2,H-6),6.77(2H,d,J=9.0 Hz,H-3,H-5).Compound 10 was characterized as 4-hydroxy-benzaldehyde by spectral analysis and comparison with standard substance of 4-hydroxy-benzaldehude when applied on TLC and eluted with different developing solvents.

Compound 11 C8H8O3,colorless oil,ESI-MS m/z 175.2[M+Na]+;151.0[M– H]–;1H NMR (CDCl3,500 MHz)δ:9.59(1H,m,H-1),7.38 (2H,m,H-2,H-6),6.79(1H,d,J=3.0 Hz),3.88 (3H,s,3-OCH3).Compound 11 was characterized as vanllin polymer by spectral analysis and comparison with standard substance when applied on TLC and eluted with different developing solvents.

Compound 12 C9H10O4,light yellow oil,ESI-MS m/ z 205.2[M+Na]+;1H NMR(CD3OD,500 MHz)δ: 9.70(1H,m,H-1),7.21(2H,s,H-2,H-6),3.91 (6H,s,3,5-OCH3).Compound 12 was characterized as 4-hydroxy-3,5-dimethoxy-benzaldehyde by spectral analysis and comparison with standard substance when applied on TLC and eluted with different developing solvents.

Compound 13 C9H10O4,light yellow oil,ESI-MS m/ z 205.2[M+Na]+;181.1[M-H]–;1H NMR (CDCl3,500 MHz)δ:5.86(2H,s,H-2,H-6),3.83 (6H,s,2,4-OCH3).Compound 13 was characterized as 4-hydroxy-2,6-dimethoxy-benzaldehyde by spectral analysis and comparison with standard substance when applied on TLC and eluted with different developing solvents.

Reference

1 Zhao YM,Zhang ML,Shi QW,et al.Chemical constituents of plants from the genus Inula.Chem Biodivers,2006,3:371-384.

2 Qin JJ,Jin HZ,Fu JJ,et al.Japonicones A-D,bioactive dimeric sesquiterpenes from Inula japonica Thunb.Bioorg Med Chem Lett,2009,19:710-713.

3 Qin JJ,Jin HZ,Fu JJ,et al.Advances in studies on the pharmacological activities of Inula genus plants.Nat Prod Res Dev,2008,20:442-445.

4 Qian MK,Chen ZN,Qin GW,et al.Studies on the chemical constituents of Inula linariaefolia Turcz.Acta Chin Sin,1983,41:254-260.

5 Bai NS,Zhou Z,Zhu NQ,et al.Antioxidative flavonoids from the flower of Inula Britannica.J Food Lipids,2005,12:141-149.

6 Geng HM,Zhang JY,Zhang DQ.Studies on chemical constituents of Inula Britannica L..Chin Tradit patent Med,2008,30:1188-1189.

7 Li YN,Zhang GG,Mao DS,et al.Chemical constituents of Belamcanda chinensis(L.)DC.Central South Pharm,2007,5:222-224.

8 Zhou LD,Yu JG,Guo J,et al.Compounds from roots of Chirita fimbrisepala Hand.-Mazz.China J Chin Mater Med,2001,26:114-117.

9 Luo XR,Li B,Nian JX,et al.Studies on chemical constituents of Alternanthera philoxeroides.Chin Pharm J,2007,42: 1138-1140.

10 Xue HQ,Yang HP,Wang HQ.Study on triterpenes of Ligularia xanthotricha.China J Chin Mater Med,2008,33:272-275.

11 Ma JY,Wang ZT,Xu LS,et al.Chemical constituents of Lxeris sonchifolia Hance.J China pharm Univ,1998,29:94-96.

12 Gao YD,Yang XW,Ai TM.Chemical constituents of whole herb of Dicliptera chinensis.Chin Tradit Herb Drugs,2007,38:14-17.

13 Tadahiro K,Mrtsuaki T,Nobuki S,et al.Growth and germination inhibitors in rice husks.Phytochemistry,1977,16:45-48.

猜你喜歡
上海研究
上海電力大學
我去上海參加“四大”啦
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
上海之巔
少先隊活動(2021年5期)2021-07-22 09:00:02
上海城投
上海諦霖鄒杰 Hi-Fi是“慢熱”的生意,但會越來越好
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系統研究
主站蜘蛛池模板: 国产欧美日韩91| 日韩不卡免费视频| 国产丰满成熟女性性满足视频| 日本人又色又爽的视频| 99九九成人免费视频精品| 97精品久久久大香线焦| 亚洲精品视频网| 亚洲天堂网在线播放| 亚洲午夜国产片在线观看| 久久精品嫩草研究院| 亚洲视屏在线观看| 凹凸国产熟女精品视频| 2021亚洲精品不卡a| 久久久久青草线综合超碰| 亚洲国产精品无码AV| 男女精品视频| 香蕉eeww99国产精选播放| 国内精品久久久久久久久久影视| 动漫精品啪啪一区二区三区| 国产精品综合色区在线观看| 国产又爽又黄无遮挡免费观看 | 在线国产毛片| 国产哺乳奶水91在线播放| 久久久久无码精品| 国产一在线观看| 亚洲嫩模喷白浆| 久久久亚洲国产美女国产盗摄| 91国内视频在线观看| 亚洲天堂网视频| 国产黄色免费看| 亚洲日本韩在线观看| 中文国产成人久久精品小说| 成人午夜精品一级毛片| 亚洲欧美成人| 免费一级成人毛片| 亚洲久悠悠色悠在线播放| 男女男精品视频| 亚洲人在线| 人妻精品全国免费视频| 国产视频入口| 波多野结衣AV无码久久一区| 欧美日韩国产精品综合 | 欧美中文一区| 玖玖免费视频在线观看| 精品午夜国产福利观看| 亚洲av无码人妻| 大香伊人久久| 午夜毛片福利| 99视频在线精品免费观看6| 午夜国产不卡在线观看视频| 国产原创演绎剧情有字幕的| 欧美日本视频在线观看| 国产欧美专区在线观看| 国产精品香蕉在线| 日韩第八页| 美女视频黄频a免费高清不卡| 日韩国产高清无码| 亚洲区第一页| 欧美午夜久久| 欧美成人A视频| 熟妇丰满人妻| 免费观看男人免费桶女人视频| 国产一级片网址| 亚洲精品视频在线观看视频| 国产精品欧美激情| 99国产精品国产高清一区二区| 国产精品污视频| 在线观看免费AV网| a亚洲视频| 午夜日韩久久影院| 国产大全韩国亚洲一区二区三区| 日韩无码黄色网站| 欧美日韩久久综合| 一本大道香蕉高清久久| 欧美中日韩在线| 亚洲国产一区在线观看| 亚洲欧美不卡| 看国产一级毛片| 国产精品一区二区在线播放| 久久久久久久久18禁秘| 国产中文一区a级毛片视频| 免费人成又黄又爽的视频网站|