姚茜茜,呂鈞,葉榮
復(fù)旦大學(xué)上海醫(yī)學(xué)院,上海 200032
自1981年首次發(fā)現(xiàn)獲得性免疫缺陷綜合征(acquired immune deficiency syndrome, AIDS)迄今已有30年,該病已成為世界上危害最為嚴重的傳染病之一。截至2009年,已造成3 330多萬人感染,1 800多萬人死亡[1]。AIDS的病原體——人類免疫缺陷病毒1型(human immunodeficiency virus type 1, HIV-1)是一種RNA反轉(zhuǎn)錄病毒,通過其包膜糖蛋白(envelope glycoprotein, Env)介導(dǎo),侵入宿主細胞[2]。HIV-1表面的Env為gp120和gp41兩個亞單位非共價結(jié)合組成的異二聚體,兩者由其前體gp160經(jīng)宿主細胞的蛋白酶裂解產(chǎn)生[3]。HIV-1通過gp120識別細胞膜表面主要受體CD4和輔助受體CC趨化因子受體5﹝C-C chemokine receptor type 5,CCR5)或CXC趨化因子受體4(C-X-C chemokine receptor type 4,CXCR4﹞,并激活gp41發(fā)生變構(gòu),引起病毒-細胞膜融合,從而進入細胞[4]。HIV-1 gp41通常由345個氨基酸殘基組成,分為3個主要結(jié)構(gòu)功能區(qū)域:膜外區(qū)(ectodomain)、跨膜區(qū)(membrane-spanning domain, MSD) 和膜內(nèi)區(qū)(endodomain)。每個區(qū)域內(nèi)含有多個結(jié)構(gòu)域(domain)或基序(motif),參與不同的生物學(xué)功能。膜外區(qū)主要與膜融合功能有關(guān);MSD通過疏水作用錨定在質(zhì)膜上;而膜內(nèi)區(qū)也稱為胞質(zhì)尾區(qū) (cytoplasmic tail, CT),其功能往往呈現(xiàn)多樣化[5](圖1、表1)。因此,gp41除與gp120共同參與病毒構(gòu)成外,在HIV-1的復(fù)制與致病過程中也有獨特的重要作用。本文對其結(jié)構(gòu)與功能,尤其是膜內(nèi)區(qū)的研究進展進行簡要綜述。
gp41膜外區(qū)含有一些特殊的功能決定簇,直接參與病毒與宿主細胞融合,同時也是比較活躍的抗原表位區(qū)域。gp41膜外區(qū)氨基端的16個氨基酸(512~527殘基)為富含Gly的疏水性融合肽(fusion peptide, FP),其在融合過程中的作用已被較好闡明,具有結(jié)構(gòu)多態(tài)性[6]。FP在二甲亞砜(dimethyl sulfoxide,DMSO )中為無序結(jié)構(gòu),在含水緩沖液中形成聚集的α螺旋、β折疊及無序結(jié)構(gòu)的混合體[6]。將十二烷基磷酸膽堿(dodecylphosphocholine, DPC)微粒包埋的FP進行溶液核磁共振(nuclear magnetic resonance,NMR)顯示,在感染過程中FP最有可能的構(gòu)象是α螺旋[7]。當(dāng)脂質(zhì)雙層中膽固醇濃度低時,α螺旋是FP的主要構(gòu)象,反之則部分轉(zhuǎn)換成β折疊[8]。非融合態(tài)的FP包藏在gp120/gp41復(fù)合體中,只有g(shù)p120與CD4結(jié)合后才會短暫暴露[9]。Gly是FP融合過程中構(gòu)象變化所必需的,促使FP帶動病毒蛋白傾斜插入,從而使膜失去穩(wěn)定性,最終導(dǎo)致膜融合發(fā)生[10]。此外,F(xiàn)P下游的13個氨基酸(528~540殘基)稱為融合肽近側(cè)區(qū)(fusion peptide proximal region, FPPR),其可溶性部分與gp41的近膜外部區(qū)(membrane proximal external region, MPER)的可溶性部分在HIV-1感染過程中相互作用,能釋放更多的自由能,從而增強Env三聚體的穩(wěn)定性[11]。
HIV-1 gp41具有典型的I型病毒膜融合蛋白特征,其膜外區(qū)有2個七肽重復(fù)序列(heptad repeat, HR),位于氨基端稱NHR或HR1(541~580殘基),位于羧基端稱CHR或HR2(628~664殘基)(圖1)。在膜融合過程中,NHR和CHR形成六螺旋束(six helix bundle, 6-HB),3股NHR螺旋位于中心,3段CHR螺旋以反向平行的方式包繞自身NHR螺旋,形成桶狀結(jié)構(gòu)[12,13]。6-HB的形成使FP和MSD向同一脂質(zhì)雙層相互靠近,克服能量阻礙,激活Env復(fù)合體形成融合孔,導(dǎo)致細胞脂質(zhì)雙層的穩(wěn)定性破壞,從而與病毒包膜發(fā)生融合[13-15]。6-HB間的疏水作用是影響其穩(wěn)定性的主要因素,CHR結(jié)合在NHR形成的溝槽中[12]。溝槽含有由非常保守的疏水殘基構(gòu)成的深穴核心結(jié)構(gòu),疏水殘基突變會破壞6-HB核心結(jié)構(gòu)的形成[16]。

*The residue numbering is based on HIV-1 HXB2 gp160.
圖1HIV-1gp41的結(jié)構(gòu)域
Fig.1DomainsandmotifsofHIV-1gp41
表1HIV-1gp41的主要結(jié)構(gòu)域及其功能
Tab.1FunctionsofthedomainsormotifsinHIV-1gp41

Domains or motifsLength and position*FunctionsReferencesEctodomainFP16 aa (512-527)Membrane fusionSensitive to antibody 4E108, 10, 11, 24FPPR13 aa (528-540)Membrane fusionEnv stability11NHR40 aa (541-580)Epitopes of antibodiesMembrane fusion12-14CHR37 aa (628-664)Epitopes of antibodiesMembrane fusion12-14MPER18 aa (665-682)Epitopes of neutral antibodiesViral infectivity22, 23, 25Membrane-spanning domain (MSD)23 aa (683-705)Env transportation in cellsMembrane fusion26-29, 33, 34EndodomainKennedy22 aa (731-752)Epitopes of neutral antibodies32, 40LLP-226 aa (770-795)Cell-cell fusionSensitive to antibody 4E10Cellular protein interaction24, 44, 45, 48, 56LLP-327 aa (789-815)Interaction with p115-RhoGEFLipid rafts44, 54LLP-129 aa (828-856)CalmodulinViral infectivityEnv assemblyIon permeability Lipid rafts43, 44, 54Y712XXL4 aa (712-715)Env endocytosisEnv assemblyViral polarizationVirus buddingViral infectivity38, 39, 57, 59Cys764,Cys8372 aa (764, 837)Membrane anchoringLipid raftsInfectivityVirus budding39, 41, 48, 49, 60-62Y802W8032 aa (802, 803)Env assemblyEnv transportation42, 49, 57LL855/8562 aa (855, 856)Env assemblyEnv endocytosisEnv intracellular locationViral infectivity38, 39, 42, 59
*The residue numbering is based on HIV-1 HXB2 gp160.
在Env的天然構(gòu)象中,NHR的溝槽并不暴露,只是在融合過程中短暫出現(xiàn)[17]。HIV gp41核心結(jié)構(gòu)中的“溝槽”和“深穴”是阻斷HIV與靶細胞融合的理想靶位,相關(guān)的融合抑制劑T-20已被美國食品藥品管理局批準(zhǔn)上市[16]。
gp41膜外區(qū)的MPER由最后18個氨基酸(665~682殘基)組成,高度保守、富含Trp殘基且不發(fā)生糖基化,是HIV-1感染宿主細胞所必需的[18]。用DPC微粒包裹19肽的MPER(KWASLWNWFNITNWLWYIK),應(yīng)用NMR發(fā)現(xiàn)其呈現(xiàn)α螺旋結(jié)構(gòu),芳香族和極性氨基酸分布在螺旋軸四周,Tyr、Ser等氨基酸處在同一平面上[19]。MPER的一些疏水性氨基酸殘基如Trp666、Trp672、Phe673和Ile675,在HIV和猴免疫缺陷病毒(simian immunodeficiency virus, SIV)的分離株中都十分保守,Ala替換雖不影響細胞與細胞的融合,但會使病毒的感染性大大降低[20]。MPER的5個Trp殘基全部突變?yōu)锳la,會抑制融合孔擴大及合胞體形成[21]。MPER的衍生多肽能有效滲透到脂質(zhì)膜中,該區(qū)域可能參與病毒破壞脂質(zhì)膜的過程[22]。有學(xué)者認為MPER區(qū)能起彎曲gp41分子構(gòu)象的作用,在融合過程中拉近病毒膜與靶細胞膜的距離[22,23]。此外,MPER也可引起gp41聚集,促進融合孔形成過程中的低聚物形成,參與膜分配[5]。然而,MPER的作用機制目前還不十分清楚,也無合適模型解釋其介導(dǎo)的融合過程。MPER含有3種HIV-1單克隆抗體(2F5、Z13e1和4E10)識別的表位,是最具吸引力的疫苗靶位區(qū),這些中和抗體也是研究MPER相關(guān)構(gòu)象轉(zhuǎn)變的有力工具[5,16]。4E10抗體表位特性會隨著gp41融合核心區(qū)域的結(jié)構(gòu)調(diào)整而發(fā)生顯著變化,如NHR上L568P突變能明顯改變MPER序列中4E10相關(guān)表位的抗原性和免疫原性[24]。另外,含有6-HB的MPER重組抗原,均能與6-HB及MPER的特異性抗體作用;而且在T569A和I675V突變同時發(fā)生時,能顯著提高MPER對2F5和4E10的敏感性[25]。
HIV-1 gp41的MSD由23個氨基酸(683~705殘基)組成,特別是參與螺旋與螺旋間相互作用的基序GXXXG和位于疏水核心的Arg殘基在不同的HIV-1分離株中高度保守,其缺失或突變會抑制Env裝配膜融合及病毒的感染性[26,27]。與其他病毒如水皰性口炎病毒(vesicular stomatitis virus, VSV) 的膜蛋白不同,HIV-1 gp41的MSD還含有1個額外的Gly691(GGXXG),該基序?qū)c突變表現(xiàn)較高的耐受性。G691L突變影響Env裝配至病毒顆粒,但改變基序中其他2個Gly的突變株與野生型相比,只會輕微降低融合活性和延遲復(fù)制周期[27]。研究發(fā)現(xiàn),3個Gly殘基在gp41的MSD螺旋中成簇存在,且在其側(cè)鏈存在1個氫原子,推測成簇存在的3個Gly可能使GGXXG具有更大的靈活性以適應(yīng)點突變[27]。當(dāng)gp41 MSD用VSV G蛋白或血型糖蛋白A或流行性感冒病毒HA蛋白的MSD替換后,病毒的融合活性受到損害[28,29]。然而,重組病毒仍具有復(fù)制能力,且這種異源替換也能增強gp160的加工能力[28]。
目前還沒有得到gp41的MSD晶體結(jié)構(gòu),最初的研究結(jié)果支持gp41中存在單一MSD[30]。最近有學(xué)者提出,gp41中至少存在3個MSD,并且在多個MSD模型中,膜內(nèi)區(qū)Kennedy序列以環(huán)狀結(jié)構(gòu)存在于膜外[31,32]。在不發(fā)生膜融合的情況下,原核和真核2種表達系統(tǒng)均支持單一MSD拓撲學(xué)模型;發(fā)生膜融合時,真核表達系統(tǒng)更傾向于多個MSD模型[31]。Arg質(zhì)子化會打破MSD形成的三螺旋束的穩(wěn)定性,右手螺旋結(jié)構(gòu)中3個保守Arg形成鏈間氫鍵,而左手螺旋束中沒有,說明三螺旋束在病毒-細胞膜融合過程中促進gp41三聚體形成[33]。計算機模型、動力學(xué)和代謝動力學(xué)方法研究發(fā)現(xiàn),在親水脂質(zhì)雙層膜中,MSD以傾斜的、穩(wěn)定的α螺旋構(gòu)象存在[34]。在水相,螺旋結(jié)構(gòu)中的Gly殘基形成扭曲,導(dǎo)致氨基端前幾個殘基螺旋解旋。與其他環(huán)境相比,脂質(zhì)環(huán)境中g(shù)p41的MSD三螺旋束具有更高的穩(wěn)定性[33]。
HIV gp41的膜內(nèi)區(qū)比其他病毒的跨膜蛋白長,有151個氨基酸(706~856殘基),含有多個不同的結(jié)構(gòu)域或基序,使膜內(nèi)區(qū)呈現(xiàn)功能多樣性。gp41膜內(nèi)區(qū)可促進Env穩(wěn)定結(jié)合于膜上并與細胞膜作用,降低脂質(zhì)雙層的穩(wěn)定性,改變膜的離子通透性;膜內(nèi)區(qū)也參與調(diào)控病毒的復(fù)制、顆粒裝配和致病過程;膜內(nèi)區(qū)具有誘導(dǎo)原核細胞及真核細胞的溶細胞效應(yīng),介導(dǎo)細胞殺傷等功能[35,36]。HIV-1 gp41膜內(nèi)區(qū)典型結(jié)構(gòu)特征是含有3段對水和脂質(zhì)具有雙重親和性的ɑ螺旋,因其對細胞膜有溶解效應(yīng),故稱慢病毒裂解肽(lentivirus lytic peptide, LLP)[37]。另外,一些特定的功能基序也存在于膜內(nèi)區(qū),如與蛋白內(nèi)吞轉(zhuǎn)運信號有關(guān)的Tyr依賴基序Y712XXL和雙亮氨酸基序LL855/856[38,39],可能暴露于細胞表面,能被抗體中和的Kennedy表位[40],2個參與Env蛋白與脂筏 (lipid raft) 相互作用的、潛在的棕櫚酰化位點Cys764和Cys837[41],以及1個尾連蛋白47(tail-interacting protein 47, TIP47) 作用位點Y802W803[42]。
gp41 CT突變、缺失和截短不但降低病毒的復(fù)制、感染和致細胞病變能力,而且影響gp160的加工及Env的裝配和穩(wěn)定性,減緩Env的細胞表面內(nèi)化、病毒顆粒脫殼及與基質(zhì)蛋白(matrix protein, MA蛋白)的相互作用等[43-45]。一些CT點突變和截短突變會增加HIV-1膜融合能力及Env的表面表達和裝配,或改變Env膜外區(qū)的生物化學(xué)和免疫特性[35]。截去CT能增強Env的中和敏感性,對病毒的免疫逃逸有一定作用[46];HIV或SIV的CT決定Env特異性裝配至病毒顆粒,CT的改變會影響gp120/gp41復(fù)合體的穩(wěn)定性[43]。體外實驗證實,gp41的CT缺失會影響病毒在細胞內(nèi)復(fù)制,且與病毒的細胞依賴類型有關(guān)[47]。HIV在外周血單核細胞(peripheral blood mononuclear cell,PBMC)中復(fù)制需要完整的CT,如CT缺失突變株(HIV-Env-Tr712)復(fù)制性病毒傳播只發(fā)生在MT-4等一些細胞系(稱允許細胞),而在大多數(shù)T細胞系如H9細胞和PBMC中不發(fā)生復(fù)制性病毒傳播(稱非允許細胞)[36]。另一方面,突變或截短的gp41 CT也能提高病毒膜融合效率,促進6-HB形成,增強Env對6-HB形成抑制多肽的抗性等[16]。gp41 CT的一些點突變會使病毒對一些單克隆抗體及多克隆抗體產(chǎn)生抗性[48]。在感染細胞中,gp41 CT通過與MA三聚體蛋白特異性的相互作用,促進Env到靶細胞 膜上裝配與出芽[49]。此外,兩性霉素B甲酯(amphotericin B methyl ester)通過抑制病毒進入和病毒顆粒產(chǎn)生而抑制HIV-1復(fù)制,但gp41 CT發(fā)生突變后產(chǎn)生新的蛋白酶分裂位點,導(dǎo)致HIV對其產(chǎn)生抗性[50]。
HIV gp41的LLP-1、LLP-2和LLP-3分別位于828~856殘基、770~795殘基和789~815殘基。這3段序列在不同HIV-1分離株中高度保守,通常親水性和疏水性氨基酸殘基分別位于這些α螺旋的兩面。LLP-3與LLP-1和LLP-2不同,其親水面無帶正電荷的氨基酸,而是1個亮氨酸拉鏈結(jié)構(gòu)[51]。LLP-3中還含有1個富含芳香族氨基酸的區(qū)域,有4個Ser和2個Tyr[44]。LLP-1和LLP-2序列中一些Arg高度保守[52]。 通過光誘導(dǎo)的化學(xué)反應(yīng),LLP-3可插入病毒膜中[51];LLP-3也能與含有磷脂的人工膜相互作用,誘導(dǎo)脂質(zhì)體滲漏和聚集[44]。LLP-1與膜結(jié)合后插入膜內(nèi),親水面朝內(nèi),疏水面朝外,并與磷脂雙層結(jié)合,形成1個桶狀離子通道,稱病毒孔道蛋白(viroporin)。該離子通道使帶電離子通過,增加細胞膜的電導(dǎo)率,引起膜兩側(cè)離子再分布及細胞體積發(fā)生變化,最終導(dǎo)致細胞溶解,稱“氣球樣退化”(balloon degeneration)。“氣球樣退化”與LLP的一些特殊生物功能如廣譜抗菌作用及溶血作用有關(guān)[51]。此外,LLP-1與鈣調(diào)蛋白、LLP-3與p115-RhoGEF蛋白羧基端的調(diào)控域發(fā)生相互作用[53]。圓二色譜(circular dichroism)和傅里葉變換紅外光譜法(Fourier transform infrared spectroscopy)研究表明,LLP-1和LLP-2能使磷脂酰小囊泡釋放羧基生物素,使大單室脂質(zhì)體融合、破裂及引起磷脂混合,并可溶解細菌、真菌、紅細胞和各種培養(yǎng)的真核細胞[51]。
LLP-1中一些帶電荷氨基酸殘基的替換或缺失會影響Env在細胞表面表達,與Env的膜融合、顆粒包裝、穩(wěn)定性及多聚化等功能有關(guān)[54]。有些LLP-1突變株發(fā)生復(fù)制缺陷,其感染性降低85%,與gp41裝配至病毒顆粒減少有關(guān)[55]。LLP-2是Env免疫原性的關(guān)鍵決定簇,突變的LLP-2與野生型相比,其螺旋結(jié)構(gòu)降低60%[48]。另外,LLP-2發(fā)生點突變,使gp41胞外區(qū)和gp120構(gòu)象發(fā)生變化,導(dǎo)致Env胞外區(qū)與中和抗體的結(jié)合率降低,但不影響其CD4和輔助受體結(jié)合位點的暴露及病毒的感染性[48]。人工合成的LLP-1及LLP-2多肽,當(dāng)保守Arg突變?yōu)锳la時,蛋白復(fù)合受體潛能和膜結(jié)合能力都明顯下降,推測可能與Arg突變使LLP二級結(jié)構(gòu)由α螺旋變?yōu)闊o規(guī)則卷曲結(jié)構(gòu)有關(guān)[52]。
HIV或SIV中g(shù)p41 CT截短或突變可改變Env的融合性,但涉及的機制仍模糊不清,充滿爭議。通過細胞-細胞融合實驗和在CT不同位點引入終止密碼子,證實截去gp41近端至LLP-2這一區(qū)域會增加Env的融合效率,并使Env膜外區(qū)中CD4誘導(dǎo)的表位暴露。定量融合實驗發(fā)現(xiàn)這些截短使融合率增加2~4倍,推測原因在于LLP-2限制了Env的膜裂解能力[35]。Kalia 等研究表明,LLP-2中的一些定點突變抑制Env的細胞-細胞融合,對病毒復(fù)制沒有明顯影響[55]。該突變體的膜融合活性降低90%,在T細胞中誘導(dǎo)合胞體形成的能力也受損,但是這種突變與細胞表面Env的表達水平大幅度下降、病毒復(fù)制及Env裝配的缺陷關(guān)系不大[55]。關(guān)于這一現(xiàn)象的可能原因是膜融合過程中,位于膜內(nèi)部的LLP-2短暫暴露至膜外并與6-HB核心結(jié)合,從而調(diào)節(jié)膜融合。此外,LLP-2可被其抗體在融合放慢時捕獲,減慢了融合過程,延長了中間過渡態(tài)[56]。
膜內(nèi)區(qū)一些胞吞和轉(zhuǎn)導(dǎo)信號與HIV-1的Env蛋白在細胞膜積累、裝配以及病毒感染性密切相關(guān)[38,39,57-59]。這些信號通過細胞蛋白發(fā)揮作用,如Tyr依賴基序(Y712XXL)與細胞網(wǎng)格蛋白銜接蛋白2 (adaptor protein 2, AP-2) 發(fā)生相互作用[39,58,60,61],而雙亮氨酸基序(LL855/856)與AP-1結(jié)合[62]。
不同細胞中HIV-1顆粒包裝的位置不同,如T細胞中包裝主要發(fā)生于質(zhì)膜,而巨噬細胞中發(fā)生于膜相關(guān)細胞器。穩(wěn)定狀態(tài)下,病毒感染后Env主要分布于核周圍的高爾基復(fù)合體反面網(wǎng)絡(luò)結(jié)構(gòu)(trans-Golgi network, TGN)中[57]。病毒包裝前Env進行定向轉(zhuǎn)運,使Env在特定部位的濃度處于最適狀態(tài);Y712XXL突變會影響病毒顆粒的裝配及其感染性,但兩者并不一致,且與細胞類型有關(guān)[38]。Y712S突變時,病毒顆粒的裝配增加2倍,同時感染性也更強;而Y712C突變時,裝配水平降低3/4,感染性卻增強[38]。不完整的Tyr依賴基序可使細胞表面Env表達量增加,但沒有持續(xù)觀察到這些突變株中Env的裝配增加[59]。Y712XXL信號也依賴gp120。Y712A突變中,gp120在MT4細胞中的裝配輕微降低,而在293T細胞中裝配水平?jīng)]有變化。Y712XXL缺失并不能完全阻斷Env的內(nèi)吞作用,只有同時將LL855/856刪除才能完全阻礙內(nèi)吞作用[59]。盡管如此,Y712XXL和LL855/856活性不具有疊加效應(yīng)。一些以CCR5為輔助受體的嗜巨噬細胞病毒,其Y712A突變并不明顯影響感染性或復(fù)制率[59]。LL855/856突變?yōu)锳la時,在HeLa細胞中Env顯示明顯的近核區(qū)域化,而在細胞質(zhì)的外圍則分散存在[38]。雙芳香氨基酸Y802W803與TIP47結(jié)合介導(dǎo)Env運輸,對有感染能力病毒的形成和Env裝配至病毒顆粒非常重要。如在HeLa細胞中,野生型Env分布在近核區(qū)域。若Y802W803發(fā)生突變,Env則分布在細胞質(zhì)的小囊泡中[42]。Y712XXL除作為內(nèi)吞信號外,還與HIV的極化出芽有關(guān)[63]。
HIV-1 gp41膜內(nèi)區(qū)有2個相當(dāng)保守的Cys殘基,分別位于LLP-2上游和LLP-1內(nèi)部(Cys764和Cys837),參與Env的棕櫚酰化和脂筏形成,是病毒出芽、裝配所必需的[64]。如將Cys突變?yōu)锳la,會消除Env與脂筏的相互作用,并極大降低脂質(zhì)膜包裝,其感染性也只有野生株的40%[41]。然而,也有實驗顯示該棕櫚酰化對病毒復(fù)制影響并不明顯。如HIV分子克隆毒株pJRCSF的gp41膜內(nèi)區(qū)無Cys殘基,但仍有復(fù)制能力和感染性[65]。Cys764位置更靠近膜,其棕櫚酰化可能有助于該Env錨定到膜上。另有學(xué)者則認為,Cys837棕櫚酰化占主要作用[61]。此外,LLP-1本身也可能參與脂筏作用,并不一定與Cys有關(guān)。LLP-1截短后,Env在脂筏上的定位明顯減低。點突變或替換突變也表明,LLP-1的α螺旋結(jié)構(gòu)對Env與脂筏的相互作用疏水面比親水面更重要[49]。用Pro替換疏水面的殘基Val829、Val833和Ile843后,Env的脂筏作用極大削弱;替換親水面的殘基Val832、Ala839和Leu855時,對Env的脂筏作用影響相對較小[49]。
HIV通過Env CT與Gag的相互作用調(diào)控病毒裝配過程[66]。實驗證明,HIV-1 MA蛋白突變會阻斷Env包裝,而截短或缺失的CT逆轉(zhuǎn)這種包裝缺陷;同樣,因Env CT突變引起的裝配異常也可被MA蛋白突變修正[62]。另外,MA蛋白上的一些突變也會阻礙Env轉(zhuǎn)運至組裝位點,如MA蛋白的一些Ser殘基突變使MA蛋白的磷酸化降低,嚴重損害病毒與靶細胞的膜融合及其感染能力,病毒顆粒的gp120裝配降低,這些損害可通過膜內(nèi)區(qū)的缺失修復(fù)[64]。HIV-1和SIV的Env可指導(dǎo)Gag從極化上皮細胞底外側(cè)釋放,其膜內(nèi)區(qū)能與MA蛋白直接作用,由LLP-2堿基缺失導(dǎo)致的Env裝配缺陷通過MA蛋白中單個氨基酸的改變會發(fā)生逆轉(zhuǎn)[45]。Gag通過自身的加工及與Env 膜內(nèi)區(qū)末端的相互作用限制其融合活性,因而與未成熟病毒顆粒的感染性相關(guān),而CT導(dǎo)致的Gag表達下調(diào)可能是調(diào)控病毒裝配和出芽過程中的一個重要步驟[43]。
Env整合到病毒顆粒中是通過LLP與Gag基質(zhì)區(qū)域相互作用發(fā)生的,然而在這一過程中究竟是LLP-1、LLP-2,還是LLP-3的作用,尚有待進一步研究[57]。Hourioux等構(gòu)建了CT區(qū)的一系列多肽,發(fā)現(xiàn)742~835多個多肽都能與Pr55Gag顆粒結(jié)合,并推測LLP-2及其鄰近區(qū)域在該過程中起主要作用[67]。Murakami的研究提供了一些MA蛋白與LLP-2相互作用的遺傳學(xué)證據(jù)[45]。Piller等對LLP-1區(qū)域進行突變、缺失、替換,發(fā)現(xiàn)大部分突變體都對Env的裝配有顯著影響[68]。Kalia等研究發(fā)現(xiàn),LLP-1突變株的Env裝配能力顯著下降,而LLP-2突變株則具備完全的Env裝配能力[55]。存在于LLP-3中的雙芳香氨基酸Y802W803能將Env錨定到TGN,因此LLP-3在Env的裝配中也起重要作用[42,69]。
HIV-1 gp41膜內(nèi)區(qū)對病毒的復(fù)制、裝配和致病過程起重要作用,但其功能發(fā)揮的確切機制仍不清楚。由于膜內(nèi)區(qū)在結(jié)構(gòu)和功能上不僅與gp41膜外區(qū),還與gp120的結(jié)構(gòu)和功能密切相關(guān),因此對單個結(jié)構(gòu)域的作用很難明確界定[70]。首先,較長的gp41膜內(nèi)區(qū)經(jīng)常發(fā)生代償性變異,在功能上表現(xiàn)出靈活性。如Env與MA蛋白的相互作用調(diào)節(jié)HIV-1裝配和成熟過程,兩者存在明顯的誘導(dǎo)性突變傾向,提高病毒裝配能力。最近發(fā)現(xiàn),這種Env膜內(nèi)區(qū)變異方式使HIV-2和SIV突變體獲得拮抗抑制病毒釋放的Tetherin(干擾素誘導(dǎo)的細胞膜蛋白),從而恢復(fù)突變子的致病性[71]。其次,不同結(jié)構(gòu)域或基序相互作用,共同完成Env的膜融合等功能。如果gp41膜內(nèi)區(qū)尤其是Kennedy表位的拓撲結(jié)構(gòu)發(fā)生變化,可能會導(dǎo)致MSD和膜內(nèi)區(qū)其他結(jié)構(gòu)域的相對位置和功能改變[31,32,56]。上述進展對了解HIV-1的感染、復(fù)制和致病機制,研發(fā)新的抗病毒藥物提供了一定理論基礎(chǔ)。
[1] Unaids report on the global AIDS epidemic 2010 [R/OL]. http://www.unaids.org/globalreport/documents/20101123_GlobalReport_full_en.pdf.
[2] Freed EO, Martin MA. HIVs and Their Replication [M]. Knipe DM, Howley PM. eds. Fields Virology. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2007, 2108-2185.
[3] 楊金華, 葉榮. 病毒跨膜蛋白的結(jié)構(gòu)功能與抗病毒藥物設(shè)計 [J]. 微生物與感染, 2009, 4(4): 231-240.
[4] 周海舟. HIV-1包膜糖蛋白侵入靶細胞作用機制研究進展 [J]. 國外醫(yī)學(xué)·免疫學(xué)分冊, 2004, 27(4): 231-233.
[5] Montero M, Houten NE, Wang X, Scott JK. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design [J]. Microbiol Mol Biol Rev, 2008, 72(1): 54-84.
[6] Buzon V, Padros E, Cladera J. Interaction of fusion peptides from HIV gp41 with membranes: a time-resolved membrane binding, lipid mixing, and structural study [J]. Biochemistry, 2005, 44(40): 13354-13364.
[7] Li Y, Tamm LK. Structure and plasticity of the human immunodeficiency virus gp41 fusion domain in lipid micelles and bilayers [J]. Biophys J, 2007, 93(3): 876-885.
[8] Zheng Z, Yang R, Bodner ML, Weliky DP. Conformational flexibility and strand arrangements of the membrane-associated HIV fusion peptide trimer probed by solid-state NMR spectroscopy [J]. Biochemistry, 2006, 45(43): 12960-12975.
[9] Cheng SF, Chien MP, Lin CH, Chang CC, Lin CH, Liu YT, Chang DK. The fusion peptide domain is the primary membrane-inserted region and enhances membrane interaction of the ectodomain of HIV-1 gp41 [J]. Mol Membr Biol, 2010, 27(1): 32-49.
[10] Wong TC. Membrane structure of the human immunodeficiency virus gp41 fusion peptide by molecular dynamics simulation II. The glycine mutants [J]. Biochim Biophys Acta, 2003, 1609(1): 45-54.
[11] Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions [J]. PLoS Pathog, 2010, 6 (5): e1000880.
[12] Markosyan RM, Cohen FS, Melikyan GB. HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation [J]. Mol Biol Cell, 2003, 14(3): 926-938.
[13] Hrin R, Montgomery DL, Wang F, Condra JH, An Z, Strohl WR, Bianchi E, Pessi A, Joyce JG, Wang YJ. Short communication: In vitro synergy between peptides or neutralizing antibodies targeting the N- and C-terminal heptad repeats of HIV type 1 gp41 [J]. AIDS Res Hum Retroviruses, 2008, 24(12): 1537-1544.
[14] Wang S, York J, Shu W, Stoller MO, Nunberg JH, Lu M. Interhelical interactions in the gp41 core:implication for activation of HIV-1 membrane fusion [J]. Biochemistry, 2002, 41(23): 7283-7292.
[15] Lorizate M, de la Arada I, Sànchez-Martínez S, de la Torre BG, Andreu D, Arrondo JLR, Nieva JL. Structural analysis and assembly of the HIV-1 gp41 amino-terminal fusion peptide and the pretransmembrane amphipathic-at-interface sequence [J]. Biochemistry, 2006, 45(48): 14337-14346.
[16] 劉叔文, 吳曙光, 姜世勃. 新型抗艾滋病藥物——HIV進入抑制劑的研究進展 [J]. 中國藥理學(xué)通報, 2005, 21(9): 1034-1040.
[17] Abrahamyan LG, Mkrtchyan SR, Binley J, Lu M, Melikyan GB, Cohen FS. The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 Env from a late prebundle configuration into the six-helix bundle [J]. J Virol, 2005, 79(1): 106-115.
[18] Ingale S, Gach JS, Zwick MB, Dawson PE. Synthesis and analysis of the membrane proximal external region epitopes of HIV-1 [J]. J Pept Sci, 2010, 16(12): 716-722.
[19] Schibli DJ, Montelaro RC, Vogel HJ. The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles [J]. Biochemistry, 2001, 40 (32): 9570-9578.
[20] Bellamy-McIntyre AK, Lay CS, Bar S, Maerz AL, Talbo GH, Drummer HE, Poumbourios P. Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion [J]. J Biol Chem, 2007, 282(32): 23104-23116.
[21] Zwick MB. The membrane-proximal external region of HIV-1 gp41: a vaccine target worth exploring [J]. AIDS, 2005, 19(16): 1725-1737.
[22] 李菁, 陸路, 吳凡, 陳曦, 牛犇, 姜世勃, 陳應(yīng)華. 鑒定 HIV-1包膜蛋白gp41的近膜端外部區(qū)與其N端三聚體結(jié)構(gòu)域之間的相互作用: 病毒融合相關(guān)的潛在機制 [J]. 科學(xué)通報, 2009, 54(9): 1244-1249.
[23] Apellaniz B, Nir S, Nieva JL. Distinct mechanisms of lipid bilayer perturbation induced by peptides derived from the membrane-proximal external region of HIV-1 gp41 [J]. Biochemistry, 2009, 48(23): 5320-5331.
[24] Li J, Chen X, Jiang SB, Chen YH. Deletion of fusion peptide or destabilization of fusion core of HIV gp41 enhances antigenicity and immunogenicity of 4E10 epitope [J]. Biochem Biophys Res Commun, 2008, 376(1): 60-64.
[25] Wang J, Tong P, Lu L, Zhou L, Xu L, Jiang SB, Chen YH. HIV-1 gp41 core with exposed membrane-proximal external region inducing broad HIV-1 neutralizing antibodies [J]. PLoS One, 2011, 6(3): e18233.
[26] Miyauchi K, Curran AR, Long Y, Kondo N, Iwamoto A, Engelman DM, Matsuda Z. The membrane-spanning domain of gp41 plays a critical role in intracellular trafficking of the HIV envelope protein [J]. Retrovirology, 2010, 7: 95.
[27] Miyauchi K, Curran R, Matthews E, Komano J, Hoshino T, Engelman DM, Matsuda Z. Mutations of conserved glycine residues within the membrane-spanning domain of human immunodeficiency virus type 1 gp41 can inhibit membrane fusion and incorporation of Env onto virions [J]. Jpn J Infec Dis, 2006, 59(2): 77-84.
[28] Miyauchi K, Komano J, Yokomaku Y, Sugiura W, Yamamoto N, Matsuda Z. Role of the specific amino acid sequence of the membrane-spanning domain of human immunodeficiency virus type 1 in membrane fusion [J]. J Virol, 2005, 79(8): 4720-4729.
[29] Welman M, Lemay G, Cohen EA. Role of envelope processing and gp41 membrane spanning domain in the formation of human immunodeficiency virus type 1 (HIV-1) fusion-competent envelope glycoprotein complex [J]. Virus Res, 2007, 124 (1-2): 103-112.
[30] Haffar OK, Dowbenko DJ, Berman PW. Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gpl60, in microsomal membranes [J]. J Cell Biol, 1988, 107(5): 1677-1687.
[31] Liu S, Kondo N, Long Y, Xiao D, Iwamoto A, Matsuda Z. Membrane topology analysis of HIV-1 envelope glycoprotein gp41 [J]. Retrovirology, 2010, 7: 100.
[32] Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC. Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes [J]. PLoS One, 2010, 5(12): e15261.
[33] Kim JH, Hartley TL, Curran AR, Engelman DM. Molecular dynamics studies of the transmembrane domain of gp41 from HIV-1 [J]. Biochim Biophys Acta, 2009, 1788(9):1804-1812.
[34] Gangupomu VK, Abrams CF. All-atom models of the membrane-spanning domain of HIV-1 gp41 from metadynamics [J]. Biophys J, 2010, 99(10): 3438-3444.
[35] Wyss S, Dimitrov AS, Baribaud F, Edwards TG, Blumenthal R, Hoxie JA. Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail [J]. J Virol, 2005, 79(19): 12231-12241.
[36] Emerson V, Haller C, Pfeiffer T, Fackler OT, Bosch V. Role of the C-terminal domain of the HIV-1 glycoprotein in cell-to-cell viral transmission between T lymphocytes [J]. Retrovirology, 2010, 7: 43.
[37] Jiang JY, Aiken C. Maturation-dependent human immunodeficiency virus type 1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail [J]. J Virol, 2007, 81(18): 9999-10008.
[38] Day JR, Münk C, Guatelli JC. The membrane-proximal tyrosine-based sorting signal of human immunodeficiency virus type 1 gp41 is required for optimal viral infectivity [J]. J Virol, 2004, 78(3): 1069-1079.
[39] Byland R, Vance PJ, Hoxie JA, Marsh M. A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein [J]. Mol Biol Cell, 2007, 18(2): 414-425.
[40] Cleveland SM, McLain L, Cheung L, Jones TD, Hollier M, Dimmock NJ. A region of the C-terminal tail of the gp41 envelope glycoprotein of human immunodeficiency virus type 1 contains a neutralizing epitope: evidence for its exposure on the surface of the virion [J]. J Gen Virol, 2003, 84 (Pt 3): 591-602.
[41] Bhattacharya J, Peters PJ, Clapham PR. Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles [J]. J Virol, 2004, 78(10): 5500-5506.
[42] Blot G, Janvier K, Le Panse S, Benarous R, Berlioz-Torrent C.Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for Env incorporation into virions and infectivity [J]. J Virol, 2003, 77(12): 6931-6945.
[43] Newman JT, Sturgeon TJ, Gupta P, Montelaro RC. Differential functional phenotypes of two primary HIV-1 strains resulting from homologous point mutations in the LLP domains of the envelope gp41 intracytoplasmic domain [J]. Virology, 2007, 367(1): 102-116.
[44] Moreno MR, Pérez-Berná AJ, Guillén J, Villalaín J. Biophysical characterization and membrane interaction of the most membranotropic region of the HIV-1 gp41 endodomain [J]. Biochim Biophys Acta, 2008, 1778 (5): 1298-1307.
[45] Murakami T, Freed EO. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and α-helix 2 of the gp41 cytoplasmic tail [J]. J Virol, 2000, 74(8): 3548-3554.
[46] Edwards TG, Hoffman TL, Baribaud F, Wyss S, LaBranche CC, Romano J, Adkinson J, Sharron M, Hoxie JA, Doms RW. Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein [J]. J Virol, 2001, 75(11): 5230-5239.
[47] Murakami T, Freed EO. The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions [J]. Proc Natl Acad Sci USA, 2000, 97 (1): 343-348.
[48] Kalia V, Sarkar S, Gupta P, Montelaro RC. Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 [J]. J Virol, 2005, 79(4): 2097-2107.
[49] Yang P, Ai LS, Huang SC, Li HF, Chan WE, Chang CW, Ko CY, Chen SS.The cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein gp41 harbors lipid raft association determinants [J]. J Virol, 2010, 84(1): 59-75.
[50] Waheed AA, Ablan SD, Sowder RC, Roser JD, Schaffner CP, Chertova E, Freed EO. Effect of mutations in the human immunodeficiency virus type 1 protease on cleavage of the gp41 cytoplasmic tail [J]. J Virol, 2010, 84(6): 3121-3126.
[51] Costin JM, Rausch JM, Garry RF, Wimley WC. Viroporin potential of the lentivirus lytic peptide (LLP) domains of the HIV-1 gp41 protein [J]. Virol J, 2007, 4:123.
[52] Zhu Y, Lu L, Chao LJ, Chen YH. Important changes in biochemical properties and function of mutated LLP12 domain of HIV-1 gp41 [J]. Chem Biol Drug Des, 2007, 70(4): 311-318.
[53] Zhang H, Wang L, Kao S, Whitehead IP, Hart MJ, Liu B, Duus K, Burridge K, Der CJ, Su L. Functional interaction between the cytoplasmic leucine-zipper domain of HIV-1 gp41 and p115-RhoGEF [J]. Curr Biol, 1999, 9 (21): 1271-1274.
[54] Chen SS, Lee SF, Wang CT. Cellular membrane-binding ability of the C-terminal cytoplasmic domain of human immunodeficiency virus type 1 envelope transmembrane protein gp41 [J]. J Virol, 2001, 75(20): 9925-9938.
[55] Kalia V, Sarkar S, Gupta P, Montelaro RC. Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation [J]. J Virol, 2003, 77(6): 3634-3646.
[56] Lu L, Zhu Y, Huang JH, Chen X, Yang HW, Jiang SB, Chen YH. Surface exposure of the HIV-1 Env cytoplasmic tail LLP2 domain during the membrane fusion process [J]. J Biol Chem, 2008, 283(24): 16723-16731.
[57] Lambelé M, Labrosse B, Roch E, Moreau A, Verrier B, Barin F, Roingeard P, Mammano F, Brand D.Impact of natural polymorphism within the gp41 cytoplasmic tail of human immunodeficiency virus type 1 on the intracellular distribution of envelope glycoproteins and viral assembly [J]. J Virol, 2007, 81(1): 125-140.
[58] Ohno H, Aguilar RC, Fournier MC, Hennecke S, Cosson P, Bonifacino JS. Interaction of endocytic signals from the HIV-1 envelope glycoprotein complex with members of the adaptor medium chain family [J]. Virology, 1997, 238 (2): 305-315.
[59] Day JR, Van Damme N, Guatelli JC. The effect of the membrane-proximal tyrosine-based sorting signal of HIV-1 gp41 on viral infectivity depends on sequences within gp120 [J]. Virology, 2006, 354(2): 316-327.
[60] Berlioz-Torrent C, Shacklett BL, Erdtmann L, Delamarre L, Bouchaert I, Sonigo P, Dokhelar MC, Benarous R. Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adaptor complexes modulate intracellular and cell surface expression of envelope glycoproteins [J]. J Virol, 1999, 73(2): 1350-1361.
[61] Boge M, Wyss S, Bonifacino JS, Thali M. A membrane proximal tyrosine-based signal mediates internalization of the HIV-1 envelope glycoprotein via interaction with the AP-2 clathrin adaptor [J]. J Biol Chem, 1998, 273(25): 15773-15778.
[62] Wyss S, Berlioz-Torrent C, Boge M, Blot G, Honing S, Benarous R, Thali M. The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adaptor [J]. J Virol, 2001, 75(6): 2982-2992.
[63] Lodge R, Lalonde JP, Lemay G, Cohen EA. The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells [J]. EMBO J, 1997, 16(4), 695-705.
[64] Rousso I, Mixon MB, Chen BK, Kim PS. Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity [J]. Proc Natl Acad Sci USA, 2000, 97(25): 13523-13525.
[65] Chan WE, Lin HH, Chen SS. Wild-type-like viral replication potential of human immunodeficiency virus type 1 envelope mutants lacking palmitoylation signals [J]. J Virol, 2005, 79(13): 8374-8387.
[66] Cosson P. Direct interaction between the envelope and matrix proteins of HIV-1 [J]. EMBO J, 1996, 15(21): 5783-5788.
[67] Hourioux C, Brand D, Sizaret PY, Lemiale F, Lebigot S, Barin F, Roingeard P. Identification of the glycoprotein 41TMcytoplasmic tail domains of human immunodeficiency virus type 1 that interact with Pr55Gagparticles [J]. AIDS Res Hum Retroviruses, 2000, 16(12): 1141-1147.
[68] Piller SC, Dubay JW, Derdeyn CA, Hunter E. Mutational analysis of conserved domains within the cytoplasmic tail of gp41 from human immunodeficiency virus type 1: effects on glycoprotein incorporation and infectivity [J]. J Virol, 2000, 74(24): 11717-11723.
[69] Lopez-Vergès S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions [J]. Proc Natl Acad Sci USA, 2006, 103(40): 14947-14952.
[70] Bhakta SJ, Shang L, Prince JL, Claiborne DT, Hunter E. Mutagenesis of tyrosine and di-leucine motifs in the HIV-1 envelope cytoplasmic domain results in a loss of Env-mediated fusion and infectivity [J]. Retrovirology, 2011, 8: 37.
[71] Serra-Moreno R, Jia B, Breed M, Alvarez X, Evans DT. Compensatory changes in the cytoplasmic tail of gp41 confer resistance to Tetherin/BST-2 in a pathogenic Nef-deleted SIV [J]. Cell Host Microbe, 2011, 9(1): 46-57.