999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高階等差數列求和的方法

2010-12-31 00:00:00陳甦甦
科教導刊 2010年30期

摘要本文主要介紹k階差分數列、高階等差數列及k 階差分多項式的定理、引理導出求高階等差數列前n項和的方法。

中圖分類號:O13文獻標識碼:A

1 問題的提出

在中學數學中,我們知道k = 1+2+3+…+n = n (n+1)可利用等差數列前項和公式得出。而對于k2 = 12+22+32+…+n2 = n (n+1)(2n+1),它不是等差數列,我們怎樣得出的呢?第一個推導出的人是古希臘數學家阿基米德,他是用恒等式(k+1)3 - k3 = 3k2+ 3k+1推導出來的。

那么,對任意自然數r,該如何求kr = 1r+2r+3r+…+nr 的和?這是有一般公式的,它最早由瑞士數學家雅谷。貝努利推出的,有了貝努利公式,求kr就成了一種步驟,但是否還有其他方法?回答是肯定的,下面來簡單介紹。

2 高階等差數列

定義1 如果△k{an}不是零數列,而△k+1{an}是零數列,則{an}稱是k階等差數列。特別地,非常數的等差數列稱為一階等差數列,高于一階的等差數列稱為高階等差數列。下面給出關于高階等差數列通項的兩個重要定理。

定理1數列{an}是k階等差數列的充要條件是其通項an可以用一個關于n的k次多項式來表示,即an = knk +k-1nk-1 + …1n + 0。

定理2若數列{an}是高階等差數列,則有

an = Crn-1a1(r) = C0n-1a1(0) + C1n-1a1(1) + … Cn-1n-1a1(n-1)

3 高階等差數列求和的方法

3.1 公式法(I)

例1求:k(k+1) = 1·2 + 2·3 + 3·4 + …+n(n+1)。

解:在恒等式k(k+1) ≡ k(k+1)(k+2) - (k-1)k(k+1)中,分別令k = 1,2,3,…,n-1,得1·2 =- ;2·3 =- ;

……

(n-1)n =-

整理得:k(k+1) = 1.2+2.3+3.4+ … +n(n+1)(n+2)

類似例1的方法,利用恒等式k(k+1)…(k+r) ≡ k(k+1)…(k + r + 1) -(k-1)k…(k+r)

可得一般的結論:

k(k+1)(k+2)…(k+r) = n(n+1)…(n+r+1)(1)

由定理1知,r階等差數列的通項公式(第k項的)為

f (k) = rkr +r-1kr-1+…+ 1k + 0 (2)

若能將此式化為

f (k) = rk(k+1)…(k+r-1)+r-1k(k+1)…(k+r-2)+…+1k = 0 (3)

則r階等差數列前n項和

Sn = f (k) = rk(k+1)…(k+r-1)+…+1k + 0k0

便可由(1)式直接求出,但(2)式化成(3)式是否總是可能呢?為此,引入差分多項式。

定義2形如 Pk(x) =x(x-1)(x-2)…(x-k+1) k≥1的多項式稱為k階差分多項式,稱P0(x) =1為零階差分多項式。

定理3設an = f (n),f (n)是關于n的k次多項式,則Sn = am是關于n的k+1次多項式。由引理1,2知:

Sn = f (m) = f (m) - f (0) = rPr+1(n+1) - f (0) (I)

顯然Sn是n的k+1次多項式。

由此,便可得出由公式(I)求高階等差數列前n項和的一般步驟:①求出k階等差數列的通項f (x);②令f (x) = rPr(x),代入f (0),f (1),…,f (k)的值求出1,2,…,k;③把1,2,…,k的值代入公式(I),即可求得Sn。這種求和方法的特點是計算方便。

3.2 公式法(II)

{an}的通項可由其各階差分數列的首項線性表示,那么,其前項n和Sn是否也能由{an}的各階差分數列的首項線性表示?

定理4 設{an}為k階等差數列,記其前n項和為Sk(n) =am,則Sk(n) = Cnr+1a1(r)(II)

注:當k≥n時,結論仍成立,特別地,當{an}為一階等差數列時,有a1(1) = d,a1(2) = a1(3) = … = 0,有S1(n) = Cnr+1a1(r) = Cn1a1(0) + Cn2a1(1)。

所以,S1(n) = na1 + n(n-1)d,這就是通常的等差數列的前項和公式。

3.3 待定系數法

定理5k階等差數列{an}的前n項和Sn是n的k+1次多項式。

例2:求和: (2k-1)2。

解:設Sn = 3n3 + 2n2 + 1n + 0

分別以n =1,2,3,4代入 (2k-1)2,得S1 = 1,S2 = 10,S3 = 35,S4 = 48

所以,Sn = n3 - n = n(2n-1)(2n+1)。

由例2可看出,對于階數不高的高階等差數列,如果事先能確定其階數,則應用待定系數法求其前n項和Sn較為簡便,直觀。

3.4 母函數法

定義4設{an}= {a0,a1,…,an,…}是一給定數列,則稱形式冪級數f (x) = a0 + a1x + … +anxn + …為數列{an}的母函數。

例如:數列1,2,3,…,n,…的母函數是f (x) = 1+ 2x + 3x2 +… +nxn-1+…。現設{an}為高階等差數列,f (x) 是{an}的母函數,即f (x)= a0 + a1x + … +anxn + …

由 = 1 + x + x2 + … + xn + …,得

= (a0 + a1x + … +anxn + …)(1 + x + x2 + … + xn + …)

= a0 + (a0 + a1) x + (a0 + a1 +a2 ) x2 + … + (a0 + a1 +a2 … +) xn + …

= Snxn

即{Sn}的母函數為,由此可得到下面定理:

定理6 設f (x)是階等差數列{an}的母函數,如果記{Sn} = am

(n = 0,1,2,…),那么數列{Sn}的母函數為。

這樣一來就歸結為如何計算k階等差數列{an}的母函數f (x)了,由定理1,若{an}是一k階等差數列,則,

an = C1k+1an-1+C2k+1an-2 - …+(-1)k-1an-k-1 = 0

所以,特征多項式為

1- C1k+1x + C2k+1x2 - … +(-1)k-1xk+1 = (1-x)k+1

從而得{an}的母函數為f (x)=

這里0,1,2,…,k由{an}的k+1個初始值和特征多項式的系數通過下列各式確定:

(4)

于是{Sn}的母函數fs (x)為

fs (x) == (5)

由此,可得到用母函數求高階等差數列{ a n }的前n項和的一般步驟:①確定{ a n }的階數,由階數確定f(x);②通過(4)式求r (r =1,2,3,…,k);③把r的值代入(5)式進行計算即可求出Sn。

用母函數方法求自然數方冪的和在方次不太高時還是可以的,當方次高時,就顯得比較麻煩。

以上對高階等差數列求和的五種方法進行了粗略的介紹,它們各有優、缺點也各有妙處,但殊途同歸,可根據實際情況選擇使用。

參考文獻

[1]史濟懷.母函數.上海:上海教育出版社,1981.

[2]楊迅文.數列求和方法拾綴.福建:福建人民出版社,1983.

[3]林六十,趙繼源.初等代數研究.武漢:中國地質大學出版社,1998.

主站蜘蛛池模板: 激情在线网| 少妇露出福利视频| 亚洲成人手机在线| 久久国产精品77777| 黄片一区二区三区| 国产福利小视频在线播放观看| 一级黄色网站在线免费看| 91高清在线视频| 野花国产精品入口| 高潮毛片免费观看| 久久精品国产999大香线焦| 亚洲永久视频| 在线免费观看a视频| 久久中文无码精品| 国产经典在线观看一区| 无码精品国产VA在线观看DVD | 欧美在线三级| 九色在线观看视频| 日韩国产精品无码一区二区三区| 亚洲一级毛片在线观播放| 久久亚洲国产最新网站| 成人免费一区二区三区| 亚洲精品无码在线播放网站| 久久精品一品道久久精品| 波多野结衣视频网站| 无码在线激情片| 亚洲国产成人无码AV在线影院L| 成年女人18毛片毛片免费| 狠狠操夜夜爽| 午夜国产大片免费观看| 992tv国产人成在线观看| 久久黄色视频影| 久久天天躁狠狠躁夜夜2020一| 喷潮白浆直流在线播放| 国产精品大尺度尺度视频| 国产精品亚欧美一区二区三区| 26uuu国产精品视频| 精品午夜国产福利观看| 国产视频资源在线观看| 伊人久久综在合线亚洲91| 国产精品页| 99热这里只有免费国产精品| 中文字幕资源站| 香蕉综合在线视频91| 在线免费观看AV| 国产第一页屁屁影院| 嫩草影院在线观看精品视频| 国产一区二区福利| 国产精品综合久久久| 国产剧情无码视频在线观看| 国内精品视频在线| 亚洲精品少妇熟女| 中文字幕有乳无码| 超碰aⅴ人人做人人爽欧美| 婷婷成人综合| 中文字幕免费播放| 国产精品熟女亚洲AV麻豆| 午夜国产理论| 午夜日韩久久影院| 免费一级毛片在线播放傲雪网| 国产精品手机在线观看你懂的| 91精品啪在线观看国产91九色| 成AV人片一区二区三区久久| 欧美激情综合一区二区| 国模沟沟一区二区三区| 人人看人人鲁狠狠高清| 午夜欧美在线| 99色亚洲国产精品11p| 成人韩免费网站| 国产性生大片免费观看性欧美| 色婷婷天天综合在线| 波多野结衣一区二区三区88| 日韩视频福利| 亚洲成肉网| 色妞永久免费视频| 日本午夜精品一本在线观看 | 亚洲无码高清免费视频亚洲| 亚洲欧洲日产无码AV| 免费看美女自慰的网站| 99久久精品视香蕉蕉| 日本精品αv中文字幕| 欧美日韩第二页|