999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

咪唑基離子液體的物理化學(xué)性質(zhì)估算及預(yù)測

2010-12-12 02:41:34劉青山譚志誠WELZBIERMANNUrs
物理化學(xué)學(xué)報(bào) 2010年6期
關(guān)鍵詞:實(shí)驗(yàn)室化學(xué)物理

劉青山 楊 淼 譚志誠,2,* WELZ-BIERMANN Urs,*

(1中國科學(xué)院大連化學(xué)物理研究所,中國離子液體實(shí)驗(yàn)室,遼寧大連 116023; 2中國科學(xué)院大連化學(xué)物理研究所,熱化學(xué)實(shí)驗(yàn)室,遼寧大連 116023)

ILs as organic salts,often exhibit interesting properties,such as low melting points,good solvation properties,and nonvolatility,which are required both by industrial and scientific communities for their broad application range as electrolytes in batteries and supercapacitors[1-2],reaction media in nanoscience[3], physical chemistry[4-5]and many other areas.Therefore,the data of physicochemical properties of ILs are fundamental for their future application and valuable for an insight into the origins of their unique behavior.Recently,more and more publications reported the experimental physicochemical properties of various ILs[6-15].Although there is a significant amount of data related to imidazolium-based ILs,properties of homologue of[Cnmim] [EtSO4],[Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)covered inthis publication are still limited[16-17].In this regard,we estimated various physicochemical properties of[C2mim][EtSO4],[C4mim] [OcSO4],and[C2mim][NTf2]by using their experimental density and surface tension data.In the next step,the physicochemical properties of their homologues[Cnmim][EtSO4],[Cnmim][OcSO4], and[Cnmim][NTf2](n=1-6)were predicted from the estimated values of their molecular volumes and parachors.In the present paper,the ionic liquid cations are 1-alkyl-3-methylimidazolium ([Cnmim]+),tetra-alkyl ammonium([TAA]+),N-octyl-3-methylpyridinium([m3opy]+);the anions of the ILs are ethylsulfate ([EtSO4]-),octylsulfate([OcSO4]-),bis(trifluoromethylsulfony) imide([NTf2]-),and tetrafluoroborate([BF4]-).

1 Volumetric,entropy and lattice energy

The molecular volume,Vm,can be calculated from experimental density using the following equation: where M is molar mass,ρ is density,and N is Avogadro′s constant.

According to Glasser′s theory[18],the standard molar entropy, S?,could be estimated from the following equation:

The lattice energy,UPOT,was estimated according to the following equation[18]:

The contribution methylene(—CH2—)group to the molecular volume is 0.0272 nm3for[Cnmim][BF4][18],0.0282 nm3for [Cnmim][NTf2][18],0.0270 nm3for[Cnmim][AlCl4][15],and 0.0278 nm3for[Cnmim][Ala][14].Due to the similar values of the contribution of per—CH2—to the molecular volume,the group of methylene in the alkyl chains of the imidazolium-based ILs could be considered to have the similar chemical environment.Hense, the mean value of the contribution can be calculated to be 0.0275 nm3,the physicochemical properties(density,standard entropy, latticeenergy)of the homologues of[Cnmim][EtSO4]and[Cnmim] [OcSO4](n=1-6)could be predicted.Using the value 0.0282 nm3for the contribution of per—CH2—to the molecular volume for the homologues of[Cnmim][NTf2](n=1-6)[18],the physicochemical properties of all IL homologues can be predicted.The calculated density value(1.4381 g·cm-3)for[C4mim][NTf2]is in good agreement with the experimental values(1.4366 g·cm-3[6], 1.43410 and 1.43573 g·cm-3[19]).The predicted density value (1.0881 g·cm-3)for[C2mim][OcSO4]is also in good agreement with the experimental value of 1.0942 g·cm-3[20].

All of these estimated and predicted physicochemical property data are listed in Tables 1-3.

Based on the plots of S?against the number of the carbons,n, in the alkyl chain of the ILs(see Fig.1),the contribution of per methylene group to S?was calculated to be 35.1 J·K-1·mol-1for [Cnmim][NTf2],34.3 J·K-1·mol-1for[Cnmim][EtSO4],and 34.3 J·K-1·mol-1for[Cnmim][OcSO4].The above calculated values are in good agreement with the literature values of 35.1 J·K-1·mol-1for[Cnmim][NTf2][18],33.9 J·K-1·mol-1for[Cnmim][BF4][18],33.7 J·K-1·mol-1for[Cnmim][AlCl4][15],and 34.6 J·K-1·mol-1for [Cnmim][Ala][14].According to these various values for the contribution of per methylene group to the standard molar entropy in the homologue series with different anions,it could be concluded that these contributions are relatively similar for all imidazolium-based ILs.

2 Parachors and molar enthalpy of vaporization

The parachor,P,was estimated from the following equation[21]:

where γ is the surface tension.

According to literature[15],the contribution of per methylene (—CH2—)group to parachor is 31.1.The values of parachors for the homologue series of the imidazolium-based ILs[Cnmim] [EtSO4],[Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)were predicted.

The values of molar enthalpies of vaporization were estimated in terms of Kabo′s empirical equation[22]:

where V is molar volume.

According to Eq.(4),the surface tension can be calculated from predicted density and parachor data.The calculated value(31.71 mJ·m-2)for the surface tension of[C4mim][NTf2]is in good agr-eement with the experimental value(32.80 mJ·m-2)[6].The molar enthalpy of vaporization,,then can be obtained based on the predicted density and surface tension data.

Table 1 Estimated and predicted values of physicochemical properties of[Cnmim][EtSO4](n=1-6)at 298.15 K

Table 2 Estimated and predicted values of physicochemical properties of[Cnmim][NTf2](n=1-6)at 298.15 K

Table 3 Estimated and predicted values of the physicochemical properties of[Cnmim][OcSO4](n=1-6)at 298.15 K

All of these data are listed in Tables 1-4.

Fig.1 Plots of S?against the number of the carbon(n)in the alkyl chain of the ILs at 298.15 K(a)S?=570.7+34.27n,R=0.9999 for[Cnmim][OcSO4]; (b)S?=492.7+35.14n,R=0.9999 for[Cnmim][NTf2]; (c)S?=355.2+34.29n,R=0.9999 for[Cnmim][EtSO4]

The plots of density,ρ,and surface tension,γ,against the number of carbon,n,in alkyl chain of ILs at 298.15 K are shown in Figs.2 and 3.

FromtheFigs.2and3,itcanbeseenthatasfordensity:[Cnmim] [NTf2]>[Cnmim][EtSO4]>[Cnmim][OcSO4]and as for surface tension:[Cnmim][EtSO4]>[Cnmim][NTf2]>[Cnmim][OcSO4].

3 Interstice model theory

According to the interstice model[23-24],the interstice volume,v, could be estimated by classical statistical mechanics:

where kBis the Boltzmann constant,T is the thermodynamic temperature.

The molar volume of ionic liquids,V,consists of the inherent volume,Vi,and the volume of the interstice;whereas the molar volume of the interstice is Σv=2Nv:

If the expansion volume of IL only results from the expansion of the interstice when the temperature increases,then,the thermal expansion coefficient,α,can be predicted from the interstice model:

Table 4 Values of the molar enthalpies of vaporization of ILs at 298.15 K

Fig.2 Plots of density(ρ)against n(n=1-6)at 298.15 K

All data obtained by this estimation and prediction are listed in Tables 1-3.

The prediction and estimation values of the thermalexpansion coefficients in Tables 1-3 are in good agreement with experimental values.It also can be noticed that the values of interstice fractions,Σv/V,differentiate only about 10%-15%for all ILs studied in the present article and these values are in good agreement with the values of volume expansion in the process from solid to liquid state for the majority of materials.Therefore the interstice model is applicable and the interstice model theory can be used to calculate the thermal expansion coefficient of imidazolium-based ILs.

4 Prediction of enthalpy of vaporization

Recently,Verevkin[25]has published an article titled“Predicting enthalpy of vaporization of ionic liquids:a simple rule for a complex property”,in which he predicted molar enthalpy of vaporization of ILs by a simple rule in case of lack of experimental data.He proposed the following simple rule:

where ΔHiis the contribution of the ith element,niis the number of the element of the ith type in ILs,ΔHjis the contribution of the jth structural correction and njis the number of the element of the jth structural correction in ILs.The parameters[25]for predicting the molar enthalpy of vaporization of ILs are listed in Table 5.

Verevkin pointed out that“a special structural correction couldbe also necessary for quaternary ammonium based ILs”[25].Herein,the structure of the quaternary ammonium cation is regarded to be the ring of imidazolium cation,therefore,its structural correction parameter is ΔH=27.1 kJ·mol-1.The predicted data are listed in Table 4.From this table,the values of the molar enthalpies of vaporization,predicted by Eq.(9)are in good agreementwiththe values estimated by Eq.(5)except for[C4mim] [OcSO4].This is because that the Eq.(5)is valid mainly for ILs [Cnmim][NTf2].Indeed,the assumption to consider the quaternary ammonium cation as a ring system needs confirmation.

Table 5 Parameters for predicting the enthalpy of vaporization of ILs at 298.15 K[25]

Fig.3 Plotsofsurfacetension(γ)againstn(n=1-6)at298.15K

5 Conclusions

The physicochemical properties(molecular volume,molar volume,parachor,interstice volume,interstice fraction,thermal expansion coefficient,standard entropy,lattice energy,and molar enthalpy of vaporization)of[C2mim][EtSO4],[C4mim][OcSO4], and[C2mim][NTf2]were estimated by using their experimental data of density and surface tension.Based on the estimated data of the molecular volume and parachor,the physicochemical properties(density,surface tension and all of the properties mentioned above)for their homologue series[Cnmim][EtSO4], [Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)were predicted.

We compared the values of molar enthalpies of vaporization for[C2mim][EtSO4],[C4mim][OcSO4],[C2mim][NTf2],[C4mim] [NTf2],[N4111][NTf2],[N8881][NTf2],and[m3opy][BF4],estimated by Kabo′s empirical equation with those predicted by Verevkin′s simple rule,and found that the values calculated in terms of the two approaches are in good agreement with each other.Hence,it is suggested that the molar enthalpy of vaporization of ILs could be estimated in terms of Verevkin′s simple rule when the experimental data are not available.

1 Tsunashima,K.;Sugiya,M.Electrochem.Commun.,2007,9: 2353

2 Seki,S.;Kobayashi,Y.;Miyashiro,H.;Ohno,Y.;Usami,A.;Mita, Y.;Watanabe,M.;Terada,N.Chem.Commun.,2006:544

3 Itoh,H.;Naka,K.;Chujo,Y.J.Am.Chem.Soc.,2004,126:3026

4 Du,Z.;Yu,Y.L.;Wang,J.H.Chem.Eur.J.,2007,13:2130

5 Endres,F.;Abedin,S.Z.E.Phys.Chem.Chem.Phys.,2006,8: 2101

6 Wandschneider,A.;Lehmann,J.K.;Heintz,A.J.Chem.Eng. Data,2008,53:596

7 Bandres,I.;Giner,B.;Artigas,H.;Lafuente,C.;Royo,F.M. J.Chem.Eng.Data,2009,54:236

8 Sun,J.;Forsyth,M.;MacFarlane,D.R.J.Phys.Chem.B,1998, 102:8858

9 Tokuda,H.;Hayamizu,K.;Ishii,K.;Susan,M.A.B.H.; Watanabe,M.J.Phys.Chem.B,2004,108:16593

10 Tokuda,H.;Ishii,K.;Susan,M.A.B.H.;Tsuzuki,S.;Hayamizu, K.;Watanabe,M.J.Phys.Chem.B,2006,110:2833

11 Bandrés,I.;Giner,B.;Artigas,H.;Royo,F.M.;Lafuente,C. J.Phys.Chem.B,2008,112:3077

12 Tong,J.;Liu,Q.S.;Guan,W.;Yang,J.Z.J.Phys.Chem.B,2007, 111:3197

13 Tong,J.;Liu,Q.S.;Zhang,P.;Yang,J.Z.J.Chem.Eng.Data, 2007,52:1497

14 Fang,D.W.;Guan,W.;Tong,J.;Wang,Z.W.;Yang,J.Z.J.Phys. Chem.B,2008,112:7499

15 Tong,J.;Liu,Q.S.;Xu,W.G.;Fang,D.W.;Yang,J.Z.J.Phys. Chem.B,2008,112:4381

16 Fernández,A.;Torrecilla,J.S.;García,J.;Rodríguez,F.J.Chem. Eng.Data,2007,52:1979

17 Fernández,A.;García,J.;Torrecilla,J.S.;Oliet,M.;Rodríguez,F. J.Chem.Eng.Data,2008,53:1518

18 Glasser,L.Thermochim.Acta,2004,421:87

19 Troncoso,J.;Cerdeirina,C.A.;Sanmamed,Y.A.;Romani,L.; Rebelo,L.P.N.J.Chem.Eng.Data,2006,51:1856

20 Hasse,B.;Lehmann,J.;Assenbaum,D.;Wasserscheid,P.; Leipertz,A.;Froba,A.P.J.Chem.Eng.Data,2009,54:2576

21 Deetlefs,M.;Seddon,K.R.;Shara,M.Phys.Chem.Chem.Phys., 2006,8:642

22 Zaitsau,D.H.;Kabo,G.J.;Strechan,A.A.;Paulechka,Y.U.; Tschersich,A.;Verevkin,S.P.;Heintz,A.J.Phys.Chem.A,2006, 110:7303

23 Yang,J.Z.;Lu,X.M.;Gui,J.S.;Xu,W.G.Green Chem.,2004, 6:541

24 Zhang,Q.G.;Yang,J.Z.;Lu,X.M.;Gui,J.S.;Huang,M.Fluid Phase Equilib.,2004,226:207

25 Verevkin,S.P.Angew.Chem.Int.Edit.,2008,47:5071

猜你喜歡
實(shí)驗(yàn)室化學(xué)物理
只因是物理
井岡教育(2022年2期)2022-10-14 03:11:44
處處留心皆物理
電競實(shí)驗(yàn)室
電子競技(2019年22期)2019-03-07 05:17:26
電競實(shí)驗(yàn)室
電子競技(2019年21期)2019-02-24 06:55:52
電競實(shí)驗(yàn)室
電子競技(2019年20期)2019-02-24 06:55:35
電競實(shí)驗(yàn)室
電子競技(2019年19期)2019-01-16 05:36:09
奇妙的化學(xué)
三腳插頭上的物理知識(shí)
奇妙的化學(xué)
奇妙的化學(xué)
主站蜘蛛池模板: 亚洲免费毛片| 国产网友愉拍精品视频| 二级毛片免费观看全程| 久久久久久国产精品mv| av一区二区三区高清久久| 亚洲最大在线观看| 久久精品亚洲中文字幕乱码| 在线看国产精品| 亚洲中文字幕无码爆乳| 国产精品永久免费嫩草研究院| 自慰网址在线观看| 国产激爽爽爽大片在线观看| 亚洲成人精品| 久久精品人人做人人爽97| 国产精品亚洲а∨天堂免下载| 国产高清免费午夜在线视频| 国产激爽爽爽大片在线观看| 九色最新网址| 亚洲色中色| 亚洲性影院| 欲色天天综合网| 一区二区自拍| 婷婷丁香在线观看| 免费播放毛片| 亚洲色图欧美| 综合色区亚洲熟妇在线| 日韩福利视频导航| 国产毛片久久国产| 国产美女精品一区二区| 日韩欧美一区在线观看| 午夜免费视频网站| 啪啪免费视频一区二区| 亚洲人妖在线| 国产精品免费电影| 国产96在线 | 色九九视频| 国产美女主播一级成人毛片| 日韩欧美国产中文| 激情国产精品一区| 好吊妞欧美视频免费| 91www在线观看| 欧美成人亚洲综合精品欧美激情| 国产熟睡乱子伦视频网站| 久久青草热| 国产美女久久久久不卡| 亚卅精品无码久久毛片乌克兰| 国产爽爽视频| 99久久国产综合精品2023 | 国产精品私拍在线爆乳| aa级毛片毛片免费观看久| 精品视频第一页| 67194成是人免费无码| 视频一区视频二区中文精品| 国产欧美在线视频免费| 亚洲无线国产观看| 亚洲高清中文字幕在线看不卡| 一本大道无码日韩精品影视| 国产老女人精品免费视频| 亚洲丝袜中文字幕| 无码专区国产精品第一页| 福利在线不卡一区| 久久国产亚洲偷自| 黄色在线网| 国产精品自拍合集| 18禁黄无遮挡免费动漫网站| 99视频只有精品| 久久精品人人做人人爽电影蜜月| 五月婷婷导航| 亚洲一区二区三区香蕉| 欧美国产综合视频| 国产玖玖视频| 日韩精品专区免费无码aⅴ| 欧美成人精品欧美一级乱黄| 欧美亚洲国产一区| 88av在线| 国产91精品久久| 一本无码在线观看| 国产极品美女在线| 国产h视频在线观看视频| 久久semm亚洲国产| 三级视频中文字幕| 婷婷色中文|