999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Automorphism Group of the Schr?dinger-Virasoro Lie Algebra*

2010-09-14 09:46:38GAOShoulan
關(guān)鍵詞:浙江結(jié)構(gòu)

GAO Shou-lan

(Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

The Automorphism Group of the Schr?dinger-Virasoro Lie Algebra*

GAO Shou-lan

(Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

To study the structure of the Schr?dinger-Virasoro Lie algebrasv,we characterize the structure of the automorphism groupA ut(sv)ofsvby calculating the automorphisms ofsvand determining the relationships between certain subgroups generated by some special automorphisms.

Virasoro algebra;Schr?dinger-Virasoro algebra;automorphism

CLC number:O152.5Document code:AArticle ID:1009-1734(2010)01-0006-05

MSC 2000:08A35

0 Introduction

The Schr?dinger Lie algebra plays an important role in mathematical physics and its applications. The Schr?dinger Lie algebra inddimensions,denoted byscd,has a basis

and others vanish.scdis(d2+d+4)-dimensional with 1-dimensional centerCM0and a 3-dimensional simple Lie subalgebra sl(2,C)generated byX-1,X0,X1.The Schr?dinger Lie algebra has attached considerable interest since it was introduced and investigated as the algebra of symmetries of the free Schr?dinger equation[2~3].Its structure and representations have been extensively studied[4~5].

In[1],M.Henkel firstly introduced Schr?dinger-Virasoro Lie algebrasvduring his study on the invariance of the free Schr?dinger equation.svis a vector space over the complex fieldCwith a basis

for allm,n∈Z.It is easy to see thatsvis a semi-direct product of the centerless Virasoro algebraW= span{Ln|n∈Z}and the two-step nilpotent infinite-dimensional Lie algebrah=span{Mn,|n∈Z},Henkel investigated that sv has one-dimensional universal central extension.C.Roger and J.Unterberger studied the structure and representation theory ofsvin[6].They presented a detailed cohomological study and determinedsvhas three outer derivations.But the automorphism group ofsvhas not beenworked out.Recently,extensions and generalizations related to the Schr?dinger-Virasoro algebra have appeared and their structure and representation theory have been extensively studied,such as[7],[8].

In this paper,we determine the structure of the automorphism groupA ut(sv)of the Schr?dinger-Virasoro algebrasv.Throughout the paper,we denote byZandC*the set of integers and the set of nonzero complex numbers respectively,and all the vector spaces are assumed over the complex fieldC.

1 The Automorphism GroupAut(sv)

TheSchr?dinger-VirasoroLiealgebrasvisaperfectLiealgebrawithfinitegenerators

wheresvn=span{Ln,Mn}and=span{}for alln∈Z.

Denote byA ut(sv)andIthe automorphism group ofsvand the inner automorphism group ofsvrespectively.Obviously,Iis generated by{exp(kadMm+lad Y),m,n∈Z,k,l∈C}.For convenience, set

NoteCM0,MandM+Yare all non-trivial proper ideals ofsv,then it is easy to deduce the following lemma.

lemma 1.1 For allσ∈A ut(sv),we have

for alln∈Z.

LetJbe a subgroup ofIgenerated by{exp(k ad Mn)|n∈Z,k∈C}.ThenJis an abelian normal subgroup ofI.As a matter of fact,Jis the center of the groupI.

For alli,j,k∈Z,it is easy to see that

Consequently,we can deduce that

for allα,β∈C.Furthermore,we get

for allmk∈Z,bmk∈C,1≤k≤t.

lemma 1.2 For anyσ∈A ut(sv),there exist someτ∈Iandε∈{±1}such that

Proof By the automorphism group of the classical Witt algebra[9],there exists someε∈{±1}such that

wherei≠0 andk+l+1≠0.Obviouslyτ,∈I.Note that for anyθ∈I,we haveθ(Mn)=Mnfor alln∈Z. By direct calculation,we obtain

wherei≠0 andy∈C.Setσ=τ-1σ,then there exists somea0∈Csuch that

By Lemma 1.1 and the automorphism group of the classical Witt algebra,we can assume that

where each formula is of finite terms andμ(nk)∈C*,ani,bnj+12,f(ns),h(nt+12)∈C*.From the relation that[σ(L0),σ(Lm)]=mσ(Lm),we have

Thenni=εnforani≠0 andbnj+12=0 for allj.So

Letm=1,thennaεn-aε=(n-1)aε(n+1).By induction onn∈Z,we can infer that

Since[σ(L0),σ(Mn)]=nσ(Mn),we have=0,which implies thatni=εn.Therefore,

This forces thatni=εnand

Because[σ(Lm),σ(Mn)]=nσ(Mm+n),we getμ(ε(m+n))=μ(ε(n))forn≠0.Obviously,μ(ε(m))=μ (ε)for allm∈Z.So for allm∈Z,we have

Comparing the coefficient ofon the both sides of

we have

Finally,by the coefficient ofMε(m+n+1)on the both sides of

wherea,b∈C*andc,d∈C.It is easy to check the converse part of the theorem.

Denote byσ(ε,a,b,c,d)the automorphism ofsvsatisfying(2)~(4),thenσ(ε1,a1,b1,c1,d1)= σ(ε2,a2,b2,c2,d2)if and only ifε1=ε2,a1=a2,b1=b2,c1=c2,d1=d2,and

Therefore,Bis a normal subgroup ofA ut(sv)and we have

lemma 1.3 A,TandBare all subgroups ofA ut(sv)and

whereT≌Z(yǔ)2={±1},A≌C*×C*andB≌C×C.

LetC∞={(ai)i∈Z|ai∈C,all but finitely manyai=0},Gthesubgroupgeneratedby{exp}.ThenC∞is an abelian group.DenoteΓ=G/Γthe quotient group ofG.By(1),we have

It is easy to deduce that

Proof Define f:Γ→C∞by

whereaki=αkiforki<0,a0=c,andaki+2=αkiforki≥0,the others are zero,ki∈Zandk1≤k2≤…≤ks.Since every element ofJhas the unique formit is easy to check thatfis an isomorphism of group.

Similar to the proof above,it is easy to prove thatvia(6).

[1]HENKEL M.Schr?dinger invariance and strongly anisotropic critical systems[J].J Stat Phys,1994,75:1023.

[2]HAGEN C R.Scale and conformal transformations in Galilean-covariant field theory[J].Phys Rev D,1972,5(2):377~388.

[3]NIEDERER U.The maxiamal kinematical invariance group of the free Schr?dinger equation[J].Helv Phys Acta, 1972,73:802~810.

[4]FEINSILVER P,KOCIK J,SCHOTT R.Representations of the Schr?dinger algebra and Appellsystems[J]. Fortschr Phys,2004,52(4),343~359.

[5]FEINSILVER P,KOCIKJ,SCHOTT R.Berezin quantization of the Schr?dinger algebra,InfiniteDimensional Analysis [J].Quantum Probability and related topics,2003,6(1):57~71.

[6]ROGER C,UNTERBERGER J.The Schr?dinger-Virasoro Lie group and algebra:Representation theory and cohomological study[J].Annales Henri Poincaré,2006(7~8):1477~1529.

[7]GAO S,J IANG C,PEI Y.Structure of the extended Schrodinger-Virasoro Lie algebra[J].Algebra Colloquium,2009, 16(4):549~566.

[8]UNTERBERGER J.On vertex algebra representations of the Schr?dinger-Virasoro Lie algebra[EB/OL].[2007-03-21].arXiv:cond-mat/0703214v2.

[9]GAO S.The structures and representations of Schr?dinger-Virasoro algebras and non-graded Virasoro-like Lie algebras [D].Faculty of Science,Shanghai Jiaotong University,2008:11~14.

MSC 2000:08A35

一類Schr?dinger-Virasoro李代數(shù)的自同構(gòu)群

高壽蘭
(湖州師范學(xué)院理學(xué)院,浙江湖州313000)

為了研究Schr?dinger-Virasoro李代數(shù)sv的結(jié)構(gòu),通過(guò)計(jì)算sv的自同構(gòu)及確定由某些特殊的自同構(gòu)生成的子群之間的關(guān)系,確定了sv的自同構(gòu)群A ut(sv)的結(jié)構(gòu).

Virasoro李代數(shù);Schr?dinger-Virasoro李代數(shù);自同構(gòu)

O152.5

*Received date:2009-12-21

Biography:GAO Shou-lan,Doctor,Research Interest:Lie algebra.

猜你喜歡
浙江結(jié)構(gòu)
Mother
《形而上學(xué)》△卷的結(jié)構(gòu)和位置
掃一掃閱覽浙江“助企八條”
論結(jié)構(gòu)
新型平衡塊結(jié)構(gòu)的應(yīng)用
模具制造(2019年3期)2019-06-06 02:10:54
Dave Granlund's Cartoons
浙江“最多跑一次”倒逼“放管服”
論《日出》的結(jié)構(gòu)
浙江“雙下沉、兩提升”之路
創(chuàng)新治理結(jié)構(gòu)促進(jìn)中小企業(yè)持續(xù)成長(zhǎng)
主站蜘蛛池模板: 99久久这里只精品麻豆| 日本精品αv中文字幕| 一级成人a做片免费| 国产女人爽到高潮的免费视频| 激情乱人伦| 国产精品视频导航| 国产91久久久久久| 久久精品国产国语对白| 中文字幕在线看| 久久精品人人做人人爽| 国产精品99久久久| 精品天海翼一区二区| 国产成人久久综合一区| 极品国产在线| 国产精品久久精品| www.狠狠| 国产亚卅精品无码| 久久午夜影院| 亚洲天堂视频在线免费观看| 日韩欧美国产中文| 美女内射视频WWW网站午夜 | 三级视频中文字幕| 国产小视频在线高清播放| 老熟妇喷水一区二区三区| 国产亚洲欧美在线人成aaaa| 国产综合无码一区二区色蜜蜜| 亚洲美女操| 中文字幕无线码一区| 一级一级一片免费| 欧美精品综合视频一区二区| 国产欧美精品午夜在线播放| 国产一级做美女做受视频| 91色国产在线| 精品小视频在线观看| 亚洲国产看片基地久久1024| 亚洲天堂免费在线视频| 人妻精品全国免费视频| 久久久91人妻无码精品蜜桃HD| 国产精品无码一区二区桃花视频| 国产精品hd在线播放| 一本大道视频精品人妻| 国产精品亚洲欧美日韩久久| 免费毛片网站在线观看| 国产真实乱人视频| 国产成人亚洲欧美激情| 婷婷激情亚洲| 日韩国产高清无码| 欧美综合区自拍亚洲综合天堂| 91精品伊人久久大香线蕉| 97久久超碰极品视觉盛宴| 亚洲永久色| 熟女视频91| 亚洲欧美h| 久久毛片免费基地| 国产亚洲精品97在线观看| 波多野结衣中文字幕一区二区| 在线观看91香蕉国产免费| 三上悠亚精品二区在线观看| 中文字幕亚洲综久久2021| 亚洲国产日韩一区| 精品人妻无码中字系列| 亚洲国产综合精品一区| 久久亚洲黄色视频| 国产v精品成人免费视频71pao| 久久久久国产精品熟女影院| 国产黄网站在线观看| 男女性午夜福利网站| 91色综合综合热五月激情| 国语少妇高潮| 69av免费视频| 国产在线日本| 噜噜噜久久| 亚洲天堂福利视频| 国产精品福利导航| 国产91麻豆免费观看| 中国黄色一级视频| 日韩东京热无码人妻| av尤物免费在线观看| 国产成人精品综合| 99热这里都是国产精品| 狠狠五月天中文字幕| 国产亚洲一区二区三区在线|