999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE FORM INVARIANCES AND THE HOJMAN CONSERVED QUANTITIES FOR HAMILTON SYSTEMS*

2010-09-08 03:13:56ZhangHongBin張宏彬GuShuLong顧書龍andChenHaiBo陳海波
巢湖學院學報 2010年3期

Zhang Hong-Bin(張宏彬),Gu Shu-Long(顧書龍)and Chen Hai-Bo(陳海波)

(Department of Physics,Chaohu College,ChaohuAnhui238000)

THE FORM INVARIANCES AND THE HOJMAN CONSERVED QUANTITIES FOR HAMILTON SYSTEMS*

Zhang Hong-Bin(張宏彬),Gu Shu-Long(顧書龍)and Chen Hai-Bo(陳海波)

(Department of Physics,Chaohu College,ChaohuAnhui238000)

Abstract:The form invariance and the Lie symmetry are defined for Hamilton systems.A relation between the form invariance and the Lie symmetry is derived.The Hojman conserved quantity is constructed by using the generators of Lie symmetry.An approach to find Hojman conserved quantities in terms of the form invariance is presented.An example is given to illustrate the application of the results.

Key words:Hamilton system;form invariance;Lie symmetry;Hojman conserved quantity;PACC:0320

1 Introduction

The symmetry of mechanical systems is one of the most important subjects in physics,which has been investigated for a long time.The symmetry of a mechanical system will be useful for integrating the equations of motion,since it is closed related to invariants(or first integrals)of this system.The modern approaches of finding invariants are mainly in terms of the Noether symmetry,the Lie symmetry and the Mei form invariance.The Noether symmetry is an invariance of the Hamilton action under the infinitesimal transformation of a continuous group[1].The Noether′s theorem associates one conserved quantity to each Noether symmetry.The Mei′s form invariance is an invariance of dynamical functions of system such as Lagrangian,Hamilton,non-potential generalized force and generalized constrained force etc,under the infinitesimal transformation[2-6].A new conserved quantity can be obtained by using Mei′s from invariance[7]. Lie′s method consists in finding the continuous symmetry transformations that leave a system of differential equations invariant.These symmetry transformations constitute a Lie group.Once you have obtained the symmetry group,there are some ways to find first integrals.In 1979 Lutzky[8]showed that constants of motion for a Lagrangian system are determined even by point symmetries which do not preserve the action, and demonstrated that the explicit form of these conserved quantities can be specified from a knowledge of the symmetry group generator.In 2003,Fu and Chen[9]studied non-Noether symmetries and conserved quantities of nonconservative dynamical systems.

In 1992,Hojman[10]presented a new conservation law without using either Lagrangian or Hamilton,solely based on the existence of symmetries.This direct method has attracted much attention[11-18].In this paper,we study Hojman conserved quantities by using the Mei form invariance for the Hamilton systems.In section 2,the definitions of the form invariance and Lie symmetry are given.In section 3,the Hojman conserved quantity is constructed by using the generators of Lie symmetry for the Hamilton system.The relation between form invariance and Lie symmetry is deduced in section 4.A approach to find Hojman conserved quantities in terms of the form invariance is presented in section 5.Finally,a example is given to illustrate the application of the results.

2 Definition and criterion of form invariance for Hamilton systems

If the differential equations of motion of a mechanical system can be written in the form

then such system is called a Lagrangian system.The Lagrangian systems include(but not limited to): holonomic conservative system,holonomic system with generalized forces derived from a generalized potential,systems of inverse problem of Lagrange mechanics[19-20],nonholonomic systems with the equations of motion of the corresponding to the holonomic system governed by Eq.(1),the Chaplygin systems with the Helmholtz potential[21-22],the nonholonomic potential systems whose free motion can be realized[23].

Introducing the generalized momentums and the Hamilton

then Eq.(1)may be written in the canonical form

whereis the Hamilton.

Introduce the infinitesimal transformations with respect to time,generalized coordinates and generalized momentums

or their expansion formula

where ε is an infinitesimal parameter,τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)are called infinitesimal g enerators.Under the infinitesimal transformations(5),Hamilton H(t,q,p)becomes H(t*,q*,p*).

Definition 1:Under the infinitesimal transformation(5),if the canonical equations(3)keep their form invariant,i.e.,

where

then such invariance is called a form invariance of the Hamilton systems.

Introduce the differential operator of the infinitesimal generators

and its extensions

Expanding H*,one has

From Eqs.(6)—(10),the following criterion can be obtained.

Criterion 1:The infinitesimal transformation(5)is a Mei's symmetric transformation of the system(3),if and only if the infinitesimal generators τ(t,q,p),ξk(t,q,p)and ηk(t,q,p)satisfy the following conditions

Proof:Substituting Eq.(10)into Eqs.(6),using Eqs.(3),and neglecting and the higher infinitesimal terms,Eqs.(11)will be obtained.

3 .The Hojman conserved quantity for Hamilton systems

The basic idea of the Lie symmetry is to keep the equations of motion(3)invariant under the infinitesimal transformations(5).For convenience,Eqs.(3)are rewritten in following form

where gs=?H/?psand hs=-?H/?q· s.

Definition 2:The infinitesimal transformation(5)is a Lie′s symmetric transformationof the system(3),if and only if there exist functionsτ(t,q,p),ξs(t,q,p)and ηs(t,q,p)that satisfy the following determining equations

where

In terms of the generators of the Lie symmetry for equations(3),the following theorem concerning conserved quantities can be proved.

Theorem 1:The system(3)possesses the following conserved quantuty

If the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy the determining equations(13),

and the function μ(t,q,p)admits the following equation

Proof:From Eq.(15),one has

It is straightforward to show that for any function A(t,q,p)[10]

and substituting Eqs.(18)into Eq.(17)and using Eqs.(13),we obtain

Finding the partial differential of Eq.(16)with respect to t,qkand pkrespectively,and substituting the results into Eq.(19),and using Eqs.(13),one can get

By virture of above theorem,one can easily dudece following corollaries:

Corollary 1:The system(3)possesses the following conserved quantity

if the infintesimal generators τ(t,q,p)=0,ξs(t,q,p)and ηs(t,q,p)satisfy(22)

and function admits the equation(16).This is the result of the literature[14].

Corollary 2:The system(4)possesses the following conserved quantity

If the infintesimal generators ξs(t,q,p)=0,τ(t,q,p)and ηs(t,q,p)satisfy(24)

and function μ=μ(t,q,p)admits the equation(16).

Corollary 3:The system(4)possesses the following conserved quantity:

If the infinitesimal generators ηs(t,q,p)=0,τ(t,q,p)and ξs(t,q,p)satisfy(26)

and function μ=μ(t,q,p)admits the equation(16).

4 Necessary and sufficient condition under which the form invariance is a Lie symmetry

From the deductions of Eqs.(11)and(13),it can be seen that the form invariance is generally different from the Lie symmetry.For seeking their relations,the equation(3)may be rewritten as follows:

Then for the system(3),the determining equations of a Lie's symmetry have new form

Some direction calculations yield

Equatio(29)demonstrates the relation between the form invariance and the Lie symmetry.From the relation, the following proposition can be derived.

Proposition 1:For the Hamilton system,the necessary and sufficient condition under which the form invariance is a Lie symmetry is that the following relations hold

Let the sum of the coefficient of the terms which dependent on orrespectively equals zero,and the sum of the remainder of terms equals also zero,one has

Proof:Substitution of Eqs.(11)and(30)into Eq.(29)leads to X(1)(F)=0 and X(1)(G)=0. According to the determining equations(28),we know that the form invariance is a Lie symmetry.

Particularly,if τ=0,then the conditions(30)become

5 Hojman conserved quantity deduced from form invariance

The Hojman conserved quantity can be located by using the form invariance.

Proposition 2:For the Hamilton system,under the infinitesimal transformation(5),if the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy Eqs.(11)and(30),and there exists a function μ= μ(t,q,p)admits the equation(16),then form invariance leads to the Hojman conserved quantity(15).

Proof:If the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy Eqs.(11)and Eqs.(30),by using proposition 1,we know that the generators are also Lie symmetrical.And we can subsequently obtain the conserved quantity(15)by using the theorem 1.

Proposition 3:For the Hamilton system,under the infinitesimal transformation(5),if the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy Eqs.(11)and(32),and there exists a function μ=μ(t,q,p)admits the equation(16),then form invariance leads to the Hojman conserved quantity(21).

Proof:If the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy Eqs.(11)and(32), proposition 1 means that the generators are also Lie symmetrical.Corollary 1 yields subsequently the conserved quantity(21).

6 An Illustrative example

As an illustration of the theory developed in the preceding sections,consider the case of a simple degree of freedom linear damped oscillator

First,transform Eq.(33)into a Hamilton system,and its Lagrangian is

Therefore

Eq.(11)leads to

It can be easily verified that

are two solution sets of Eq.(36).Since the generator(37)satisfies the Eq.(13),so it is also the Lie symmetry of the system(34).However,the generators(38)don’t satisfy the Eq.(13),so it isn’t the Lie symmetry of the system(34).From Eq.(16),one has

Equation(39)exists a solution

Inserting Eqs.(37)and(40)into Eq.(25)leads to conserved quantity

7 Conclusions

For Hamilton systems,we present an approach to find Hojman conserved quantities in terms of the form invariance.

Acknowledgments:The research supported by the National Natural Science Foundation of China under Grant No.10872037 and the National Natural Science Foundation of Anhui Province under Grant No. 070416226.

[1]Noether A E 1918 Nachr.Ges.Wiss.G·ttingen.Math.Phys.KI II 235

[2]Mei F X 2000 J.Beijing Inst.Technol.9 120

[3]Mei F X 2001 Chin.Phys.10 177

[4]Mei F X and Chen X W 2001 Beijing Inst.Technol.10 138

[5]Wang S Y and Mei F X 2001 Chin.Phys.10 373

[6]Wang S Y and Mei F X 2002 Chin.Phys.11 5

[7]Mei F X 2004 J.Dyna.Contrl.2 28.(in Chinese)

[8]Lutzky M 1979 Phys.Lett.72A 86

[9]Fu J L and Chen L Q 2003 Phys.Lett.317A 255

[10]Hojman S A 1992 J.Phys.A:Math.Gen.25 L291

[11]Gonález-Gascón F 1994 J.Phys.A:Math.Gen.27 L59

[12]Lutzky M 1995 J.Phys.A:Math.Gen.28 L637

[13]Pillay T and Leach P G L 1996 J.Phys.A:Math.Gen.29 6999

[14]Mei F X 2002 Chin.Sci.Bull.47 1544

[15]Mei F X 2003 Acta Phys.Sin.52 1048(in Chinese)

[16]Zhang H B,Chen L Q and Gu S L 2004 Acta.Mech.Sinica.36 254(in Chinese)

[17]Zhang H B,Chen L Q and Gu S L 2004 Commun.Thero.Phys.42 321

[18]Zhang H B and Chen L Q 2005 J.Phys.Soc.Jap.74(3)905

[19]Santilli R M 1978 Foundations of theoretical mechanics I.(New York:Springer-Verlag)

[20]Mei F X 1988 Special problems in analytical mechanics.(Beijing:Beijing institute of technology Press)(in Chinese)

[21]Novoselov V S 1966 Variational methods in mechanics.(Leningard:LGU).(in Russian)

[22]Mei F X 1985 Foundations of mechanics of nonholonomic systems.(Beijing:Beijing institute of technology Press)(in Chinese)

[23]Mei F X 1994 Acta.Mech.Sinica.26 470.(in Chinese)

責任編輯:陳侃

*Received March 17,2010

Project supported by the National Natural Science Foundation of China under Grant No.10872037 and the National Natural Science Foundation of Anhui Province under Grant No.070416226.

Biography:Zhang Hong-Bin(1963-),Male,Doctor,Professor.

主站蜘蛛池模板: 亚洲国产综合精品一区| 欧美日本在线观看| 在线国产资源| 蜜桃视频一区二区| 亚洲人成色在线观看| 在线免费看黄的网站| 五月天婷婷网亚洲综合在线| 亚洲一道AV无码午夜福利| 蜜桃视频一区二区| 国产91高清视频| 日本欧美在线观看| av天堂最新版在线| 国产青榴视频在线观看网站| 麻豆AV网站免费进入| 91精品国产自产91精品资源| 国产免费自拍视频| 日本亚洲成高清一区二区三区| 亚洲无卡视频| 欧美日韩免费| 狠狠色香婷婷久久亚洲精品| 国产乱人伦精品一区二区| 久青草国产高清在线视频| 亚洲免费成人网| 欧美日韩国产在线观看一区二区三区| 99精品在线看| 国产成人综合久久| 国产青榴视频| 亚洲一级毛片免费观看| 内射人妻无码色AV天堂| 亚洲精品视频免费看| 国产主播在线一区| 久久综合伊人 六十路| 欧美在线精品怡红院 | 國產尤物AV尤物在線觀看| 亚洲欧洲AV一区二区三区| 欧美特黄一级大黄录像| 欧美人与牲动交a欧美精品| 88av在线看| 黄色一级视频欧美| 18禁色诱爆乳网站| 国产成人综合在线观看| 国产精品香蕉在线| 91小视频在线观看免费版高清| 亚洲精品成人片在线观看| 日韩经典精品无码一区二区| 成人无码一区二区三区视频在线观看| 亚国产欧美在线人成| 亚洲天堂网在线视频| 手机精品福利在线观看| 四虎免费视频网站| 国内精品久久久久鸭| 日韩精品毛片| 国内精自线i品一区202| 伊人AV天堂| 日韩在线视频网站| 国产理论精品| 久久久久久久97| 青青青国产视频手机| 波多野衣结在线精品二区| 精品少妇三级亚洲| 亚洲欧美国产五月天综合| 国产打屁股免费区网站| 亚洲三级a| 高清国产va日韩亚洲免费午夜电影| 久久精品波多野结衣| 国产午夜一级毛片| av午夜福利一片免费看| 国产va在线观看| 国产二级毛片| 超级碰免费视频91| 毛片免费高清免费| 国产噜噜在线视频观看| 9cao视频精品| 亚洲国产高清精品线久久| 天天摸夜夜操| 国产精品视频观看裸模| 99草精品视频| 国产91色在线| 国产精品成人观看视频国产 | 欧美黄网在线| 久久中文电影| 久久人妻xunleige无码|