余軼鵬,陶月贊,余曉慶
(合肥工業大學 土木與水利工程學院,安徽 合肥 230009)
平原地區農村供水工程的優化布局
余軼鵬,陶月贊,余曉慶
(合肥工業大學 土木與水利工程學院,安徽 合肥 230009)
目前農村飲水工程因多方面因素影響,普遍存在著工程布局不合理現象。以安徽蒙城縣為研究對象,從農村水廠的投資費用考慮,綜合兩方面因素對農村供水工程的布局進行優化,首先以供水經濟距離為依據確定其供水范圍,再在供水范圍內建立以工程投資和運行費用最小為目標的線性規劃模型。提出了在經濟供水半徑范圍內的優化布局方案,即在樂土鎮建水廠總費用最小。水廠的選址與用水量和供水距離有著密切的關系,在供水范圍的中心區域建廠并不一定經濟。
農村供水;經濟距離;線性規劃;水廠布局
目前農村飲水安全工程正積極開展建設,由于農村地區居住分散,點多面廣,以及水源條件和地利條件等多種因素影響,導致大部分供水工程供水規模不合理,規模普遍較小,工程布局不合理,重復建設現象嚴重。隨著城鄉統籌步伐的加快和社會主義新農村建設的全面推進,未來相當長一段時期內,農村供水方面的工作任務和政府投資需求將面臨挑戰。因此對農村供水工程的研究有著重要的現實意義。
本文以蒙城縣為研究對象從農村水廠的投資費用角度分兩階段對農村水廠的布局進行優化,第一階段優化以供水經濟距離為依據在供水區域確定其供水規模,第二階段建立水廠選址優化模型在供水范圍內對廠址進行優化選擇。
供水范圍的確定與當地地形、水資源條件、居民點的分布有關。隨著我國農村經濟的發展和廣大農民生活水平的提高,發展集中供水模式是農村供水工程建設的方向[1~3]。隨著水廠生產規模的擴大,按照其產生的規模經濟性質可分為規模內經濟和規模內不經濟兩類。在規模內經濟范圍內,隨著生產規模的擴大,單位制水成本下降;規模不經濟范圍內,制水規模達到一定點時,制水能力超出現有設備能力限制,若進一步擴大生產,勢必增加設備等資金投入,邊際制水成本大幅度提高,單位制水成本上升。因此,在一定范圍內單位制水成本會隨著生產規模的變化呈現先降后升的U形函數形式[4,5],故確定供水規模對水廠的可持續運行起著關鍵作用。
針對新建農村水廠,構造簡單的數學模型,以蒙城縣及周邊縣、市已建的農村供水工程資料為基礎,建立供水量、水價和供水半徑之間的函數關系,通過分析這些函數關系,討論供水半徑對供水量、水價以及供水工程經濟性的影響,提出供水經濟半徑的概念為農村供水規模的選擇、供水范圍的取舍提供了數學依據,使得現階段建設的集中供水工程能夠選用合理的供水規模、確定合適的供水范圍。
農村供水工程投資主要包括水廠投資(包括水源地建設)、供水管網一次性基建投資、運行管理費用[6]。
1.1.1 水廠建設費用
在假定區域內人口平均分布的情況下,需水量、供水半徑、區域人口密度之間存在以下函數關系:

式中:Q為需水量(L/s);r為供水半徑(km);P為人口密度(人/km2);q為人均綜合用水量(L/s?人)。
在一定區域內,可通過已建供水工程資料,通過回歸分析,建立該區域水廠建設費用W與制水量Q之間相應的函數關系:

式中:W為水廠建設費用(萬元);Q為制水量(本文中假設制水量等同需水量)(L/s)。
參照蒙城及鄰近幾個縣市、地區的已建供水工程資料實際數據和計算數據,綜合比較得出不同制水規模下水廠工程建設投資,繪制相關曲線如圖1所示。

圖1 水廠制水規模與工程建設投資關系
由圖1可知,蒙城縣范圍內,水廠建設費用W與制水量Q之間相應的函數關系為:

式中:W的單位為萬元;Q的單位為103m3/d。
1.1.2 管網基建投資
由于農村供水工程用戶點多面廣,采用的供水管網布置形式多種多樣,無法準確估計管網基建費用與相關參數的關系,可依據現有的供水管網建設資料繪制點狀分布圖(蒙城縣農村供水工程管網建設投資與供水半徑關系如圖2),通過回歸分析,從而得出該地區管網基建投資和供水半徑間相對粗糙的函數關系:

式中:C為管網基建投資(元);其余符號意義同式(1)。

圖2 供水半徑與管網基建投資關系
為了提高準確性,在進行回歸分析時,需考慮到管網實際建設與投資情況,適當的調節函數關系式各參數的選取:供水半徑較小時,入村、入戶等小管徑管道建設資金占有管網總投資相當大比例,而輸水主管道建設資金部分比例較小;隨著供水半徑的增大,輸水主管道建設投資占有的比例將會越來越大。
1.1.3 運行管理費用
每年的運行管理費用包括動力費M1和折舊大修理費M2[7],分別等于:

式中:M1為動力費(元);M2為折舊大修費(元);β為供水能量變化系數;E為電費(分/kWh);ρ為水的密度,ρ=1 kg/L;g為重力加速度,g=9.81 m/s2;p為每年扣除的折舊和大修費用,以管網造價的%計;H為泵站揚程,對于長距離輸水,可不考慮局部水頭損失(m);H0為水泵靜揚程,與水源井動水位相對應(m);h為管網水頭損失(m);η為泵站效率;其余各式意義同式(1)~(4)。
一定區域內,在各經濟參數和供水半徑確定的情況下,式(5)中只有管網水頭損失h未知,農村供水管網布置形式多種多樣,無法準確估計管網水頭損失和管網規模關系,同樣可根據現有的管網運行資料繪制相關點狀圖(蒙城縣農村供水工程供水半徑與管網水頭損失關系如圖3),通過回歸分析,建立該地區管網水頭損失與供水半徑之間簡單的函數關系:

式中:h為管網水頭損失(m);r為供水半徑(km)。

圖3 蒙城供水半徑與管網水頭損失關系
在供水半徑確定的情況下,供水輻射范圍內每年的水費收入R(已扣除制水成本)為:

式中:R為水費收入(元);c為水價;其余符號意義同式(1)。
考慮供水設施的建設、運行、管理等因素,建立供水經濟半徑估算數學模型:
利用靜態投資分析方法進行分析,則工程服務期末凈現值A為:

式中:A為工程期末凈現值(元)。
根據蒙城縣已建供水工程資料,可確定各參數取值如:

將上述參數及式(1)~(8)代入式(9),則可得到工程期末凈現值A和未知變量r之間的函數為(相關關系如圖4所示):


在水價一定的情況下,對于一次性建成的供水工程,可計算出不同的供水半徑下的工程服務期末凈現值,若使得此凈現值大于零,便認為采用該供水半徑的供水方案是經濟可行的,把滿足此條件的供水半徑稱為供水經濟半徑。

圖4 蒙城縣供水半徑與凈現值關系
由圖4可知:①水價低時,可采用的經濟供水半徑范圍較小,獲得的工程期末凈現值較低;水價高時,可采用的經濟供水半徑范圍較廣,相應的工程期末凈現值較高;②在獲得同樣凈現值的情況下,供水半徑較大的,其相應的供水價格相對較小,體現了規模經濟的優勢;③供水半徑趨于一定范圍內才能體現出來工程的經濟性;反之,供水半徑過大或過小都會導致工程處于不經濟運行范圍。
由供水經濟距離的研究可對區域水廠布局進行初步規劃,確定了其供水規模。但對供水區域內水廠的選址問題需要進一步研究。
水廠布局優化能充分發揮水資源、能源的作用,節省投資和運行費用,有很大的經濟意義和社會意義。水源和用戶的位置、選址地的高程、輸配水設施運行成本影響著水廠布局,而年運行費用包括折舊、修理維護、動力費等,反映上述影響因子,所以,水廠布局優化問題轉化為輸配水設施及管網運行費用最小的問題。根據運行費用最小這一思路,建立數學模型,求解得出結論。
平原地區水廠的廠址選擇在滿足水源、水量、水質的前提下,以供水工程經濟投資和運行費用最小為目標建立廠址優化的線性規劃[8]模型。
設供水區域有m個水源地,表示為A1,A2,…,Am,供水量為a1,a2,…,am單位m3/d;用水區域有n個,表示為B1,B2,…,Bn,其需水量分別為:b1,b2,…,bn,單位為m3/d。
從水源Ai到用水區Bj的供水量為Qij(m3/d),單位距離單位供水成本(包括基建費用)為k〔元/(km?m3)〕,從水源Ai到用水區Bj的距離為Lij(此距離為供水管道實際鋪設距離非直線距離),單位km。

蒙城地區目前地表水污染較為嚴重,第四系地層賦存松散孔隙水,第四系的厚度由西、西北部大于700 m漸變至北部、東南部小于100 m;渦河以北出露的零星山丘為寒武系灰巖和泥灰巖,該區段賦存有裂隙巖溶水,因此該地區供水水源以地下水為主。
對模型進行簡化,由于水源地為地下水,為方便管理水廠一般建在村鎮附近可近似看作在用水區Bj處,即Ai到Bj的距離Lij為零(i=j)。水源統一進入水廠進行凈化配送,即由水源所在地用水區Bi往其它用水區Bj供水。模型可簡化為,

農村村落布局點多面廣在初步規劃中以鎮為中心作為主要用水點,在二級優化中為了準確確定水廠位置,需要對用水區進一步細化。對三義、樂土中心鎮周邊村落作為用水區域,見圖5,依次標注為B1,B2,…,B11,根據蒙城縣農村居民生活水平,取居民綜合用水量為100 L/d,則其需水量表示為b1,b2,…,b11;水廠廠址選擇在用水區附近,則水廠與用水區的距離Lij為各用水區的供水距離,見表1。

圖5 供水區域村鎮位置圖

min(Zi/k)=Z4/k=21400,也即最小費用minZ為21400k元。因此廠址的選擇在B4總的費用最小,適合在B4處即樂土鎮建水廠。
由結論可看出水廠的選址與用水量和供水距離有著密切的關系,在供水范圍的中心區域建廠并不一定經濟。

表1 用水區之間距離(km)
(1)利用供水規模與供水半徑、工程投資、制水成本的關系,為供水規模的研究提供理論依據。合理選擇供水規模對工程的經濟性和可持續運行起著至關重要的作用。
(2)運用線性規劃求解方法對供水范圍內的水廠廠址進行優化選擇,對廠址的選擇提供了決策依據,對供水工程的高效運行和對工程投資的有效利用有著重要的參考意義。
(3)本文的研究對象是蒙城平原地區,而對于山區、丘嶺等地形起伏較大、水源不穩定且用戶較分散地區,文中的方法有一定的局限性,如何解決這類地區的供水規劃問題有待進一步的研究。文中單位供水成本k,需要大量工程資料進行參數擬合,需隨著工程進行進一步修正。
[1]劉學功,劉文朝,崔招女.農村供水工程發展模式及工程規劃設計應注意的問題[J].中國水利,2005,(17):59-61.
[2]楊繼富.農村飲水安全科技支撐現狀及建議[J].中國水利,2007,(17):16-18.
[3]郭孔文,胡 孟.農村供水工程發展模式探討[J].中國水利,2006,(19):38-40.
[4]任鳴鳴,楊超,何 波.生產成本規模遞減的工廠選址和規模決策[J].工業工程與管理,2007,12(6):98-103.
[5]方紅遠,王銀堂.邊際成本分析在水資源開發利用決策中的應用[J].水科學進展,2004,15(2):243-248.
[6]嚴煦世,范瑾初.給水工程[M].北京:中國建筑工業出版社,1999.
[7]白丹.樹狀給水管網的優化[J].水利學報,1996,(11):52-56.
[8]《運籌學》教材編寫組.運籌學(第三版)[M].北京:清華大學出版社,2005.
Optimal Layout on Rural Water Supply in Plain Area
YU Yi-peng,TAO Yue-zan,YU Xiao-qing
(College of Civil and Hydraulic Engineering,Hefei Polytechnical University,Hefei,Anhui230009,China)
At present,there exist the unreasonable practices in the layout of rural water supply engineering.Taking Mengcheng County as a research object,the two-phase optimizations on the layout of rural water supply engineerings are analyzed here from the point of the investing cost of rural waterworks.The first phase optimization focuses on the determination of water supply area and numbers of waterworks on the basis of economic distance,while in the second phase,the optimization for layout of waterworks is made by building a linear programming model of minimum water supply cost within the water supply area.
rural water supply;economical distance;linear programming;waterworks layout
TU991
A
1672—1144(2010)02—0106—04
2009-09-25
2010-01-14
余軼鵬(1982—),男(漢族),安徽安慶人,碩士研究生,主要研究方向為給排水工程與技術。