999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Dynamic Complexities in a Discrete Predator-prey System

2010-01-13 03:48:04ZHANGLiminLILing
武漢紡織大學學報 2010年3期
關鍵詞:利用理論系統

ZHANG Li-min,LI Ling

(Dept. of Math& Finance-economics, Sichuan Univ. of Arts& Science, Dazhou Sichuan 635000, China)

Dynamic Complexities in a Discrete Predator-prey System

ZHANG Li-min,LI Ling

(Dept. of Math& Finance-economics, Sichuan Univ. of Arts& Science, Dazhou Sichuan 635000, China)

In this paper, the dynamic behavior of a discrete predator-prey system proposed in [2] is investigated for further study. Firstly, the conditions of existence for Hopf bifurcation are derived by using bifurcation theory. Secondly, the existence of chaotic behaviors in the sense of Marotto’s definition of chaos in certain conditions is proved. Finally, numerical simulations are conducted not only to verify the validity of the theoretical analysis but also reveal other complex dynamics behaviors such as period-doublings,period-halving bifurcations, attractor crises, quasi-periodicity, chaotic bands and periodic windows.

Hopf bifurcation; Marotto’s chaos; numerical simulation

1 Introduction

About the discrete predator-prey models, one of the early works was done by Beddington et al.[1]. After that, many authors have investigated the discrete predator-prey systems[2-6,10-16]. One important reason is that some species have no overlap between successive generations, thus discrete-time models are more realistic than continuous-time models to study these species. Another reason is that people always study population change by one year (month, week, or day) in practice, thus, it is important and necessary to obtain discrete systems from continuous population dynamical models , by which one studies their dynamical properties[9]. Recently, Zhang[2]proposed the following discrete predator-prey system:

where is the integral step size. The more meaning of system (1) can refer to the reference[2]cited therein. It is shown in [2] that the system generates a flip bifurcation under some conditions.

In this paper, we continue to study system (1), to study its other dynamic behaviors, such as the existence of Hopf bifurcation and chaos. This paper is organized as follows. In the following section, we show that there exists Hopf bifurcation under some conditions. In Section 3, the existence of chaos in the sense of Marotto’s definition is proved. The numerical simulations are given in section 4.

2 Hopf bifurcation analysis

In this section, we establish conditions for the existence of Hopf bifurcation in system (1). Firstly, we introduce the following lemmas which are useful to establish our results

3 Existence of Marotto’s chaos

4 Numerical simulations

[1] Beddington JR, Free CA, Lawton JH. Dynamic complexity in predatorprey models framed in difference equations [J]. Nature, 1975, 255: 58-60.

[2] Zhang LM. Stability and bifurcation in a discrete predator-prey system with Leslie-Gower type [J]. Si Chuan University of Arts and Science Journal, 2010; 20 (2): 13-15.

[3] Celik C, Duman O. Allee effect in a discrete-time predator-prey system [J].Chaos, Solitons & Fractals, 2009, 40 (4): 1956-1962.

[4] Agiza HN, Elabbssy EM. Chaotic dynamics of a discrete prey-predator model with Holling type II [J]. Nonlinear Anal Real World Appl, 2009, 10:116-129.

[5] Liu Xl, Xiao DM. Complex dynamic behaviors of a discrete-time predator-prey system [J]. Chaos. Solitons & Fractals, 2007, 32: 80-94.

[6] Jing ZJ, Yang JP. Bifurcation and chaos in discrete-time predator-prey system [J]. Chaos, Solitons & Fractals , 2006, 27:259-277.

[7] Wiggins S. Introduction to applied nonlinear dynamical systems and chaos[M]. Berlin; Springer-Verlag, 1990.

[8] Marotto Frederick R. Snap-back repellers imply chaos innR[J]. Math Anal Appl , 1978, 63: 199-223.

[9] Zhang Y, Zhang QL, Zhao LC, Yang CY. Dynamical behavior and chaos control in a discrete function response model [J]. Chaos, Solitons &Fractals, 2007, 34: 1318-27.

[10] Francisco JS. Self-limitation in a discrete predator prey model[J]. Math Comput Model, 2008, 48: 191-196.

[11]Chen XX. Periodicity in a nonlinear discrete predator prey system with state dependent delays [J]. Nonlinear Anal Real World Appl, 2007, 8(2):435-446.

[12] Yang X. Uniform persistence and periodic solutions for a discrete predator prey system with delays [J]. J Math Anal Appl, 2006, 316:161-177.

[13] Fang N, Cheng X. Permanence of a discrete multispecies Lotka Volterra competition predator prey system with delays [J]. Nonlinear Anal Real World Appl, 2008, 9(5): 2185-2195.

[14] Chen FD. Permanence and global attractivity of a discrete multispecies Lotka Volterra competition predator prey systems [J]. Appl Math Comput, 2006, 181: 3-12.

[15] Xiao Y, Cao JD, Lin M. Discrete-time analogues of predator prey models with monotonic or nonmonotonic functional responses [J].Nonlinear Anal Real World Appl, 2007, 8(4): 1079-1095.

[16] Huo HF, Li WT. Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model. Math Comput Model 2004, 40:261-269.

O175.7

A

1009-5160(2010)03-0036-05

一類離散捕食-被捕食系統的動力學復雜性

張莉敏,李 玲

(四川文理學院 數學與財經系,四川 達州 635000)

本文對文獻[2]提出的一類離散捕食系統的動力學行為進行進一步研究. 首先利用分支理論,探討了系統在一定條件下存在 Hopf分支;隨后證明了系統在一定條件下存在 Marotto’s 混沌吸引子;最后利用數值模擬,不但驗證了理論分析的正確性而且還揭示了系統其它動力學行為,例如:倍周期、到倍周期分岔,吸引子危機,擬周期, 混沌帶和周期窗口.

Hopf 分支;Marotto’s 混沌;數值模擬

Biography:ZHANG Li-min (1982-), female, Lecturer, Research fields: Biological dynamics.

Supported by the National Natural Science Foundation of China (No.30970305), the Sichuan Provincial Education Department Scientific Research Project (No.TER2009-14),the Sichuan Provincial Old Revolutionary Base Areas Foundation (No.SLQ2010C-17), and the Sichuan University of Arts and Science Natural Scientific Research Project (No. 2009B07Z).

猜你喜歡
利用理論系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
利用min{a,b}的積分表示解決一類絕對值不等式
中等數學(2022年2期)2022-06-05 07:10:50
堅持理論創新
當代陜西(2022年5期)2022-04-19 12:10:18
神秘的混沌理論
理論創新 引領百年
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
相關于撓理論的Baer模
利用一半進行移多補少
利用數的分解來思考
主站蜘蛛池模板: 亚洲欧美天堂网| 国产一区二区三区精品欧美日韩| 97在线公开视频| 久久9966精品国产免费| 精品自窥自偷在线看| 激情六月丁香婷婷| 久久特级毛片| 午夜精品区| 国产亚洲精品97在线观看| 色综合手机在线| 特级精品毛片免费观看| 毛片大全免费观看| 91精品aⅴ无码中文字字幕蜜桃 | 黄色网在线| 久久精品中文字幕免费| 99手机在线视频| 国产不卡一级毛片视频| 亚洲国产成人久久精品软件| 91亚洲国产视频| 免费观看国产小粉嫩喷水| 91精品综合| 国产黄色爱视频| 最新日本中文字幕| 国产大片喷水在线在线视频| 亚洲国产成人综合精品2020| 色老二精品视频在线观看| 久草国产在线观看| 国模私拍一区二区| 一级爆乳无码av| 91丨九色丨首页在线播放| 搞黄网站免费观看| 伊人蕉久影院| 国产一级精品毛片基地| 六月婷婷综合| 中国国产高清免费AV片| 中国特黄美女一级视频| 亚洲无卡视频| 一本大道无码日韩精品影视| 国产精品自在线天天看片| 精品久久国产综合精麻豆| 一级爱做片免费观看久久| 91精品啪在线观看国产60岁| 久久大香香蕉国产免费网站| 国产美女免费| 亚洲黄网视频| AV老司机AV天堂| 91人人妻人人做人人爽男同| 久久综合激情网| 8090成人午夜精品| 伊人久久大线影院首页| 国产午夜人做人免费视频中文| 少妇露出福利视频| 日本a∨在线观看| 色悠久久综合| 免费毛片全部不收费的| 1024你懂的国产精品| 在线观看的黄网| 成人免费视频一区二区三区 | 国产精品午夜福利麻豆| av在线手机播放| 亚洲成人播放| 久久国产精品无码hdav| 日本免费高清一区| 原味小视频在线www国产| 亚洲国产成熟视频在线多多| 91po国产在线精品免费观看| 伊人色婷婷| 国产亚洲精| 久久永久免费人妻精品| 高清无码一本到东京热| 国产理论一区| jizz国产在线| 在线va视频| 国产在线观看一区精品| 国产91丝袜在线播放动漫 | 四虎成人精品在永久免费| 91久久偷偷做嫩草影院| 99久久精彩视频| 自拍中文字幕| 中文字幕在线免费看| 日韩黄色在线| 亚洲无线视频|