鄭昆
(云南電網公司昭通供電局,云南 昭通 657000)
在變壓器診斷中,單靠電氣試驗方法往往很難發現某些局部故障和發熱缺陷,而通過變壓器油中氣體的色譜分析這種化學檢測的方法,對發現變壓器內部的某些潛伏性故障及其發展程度的早期診斷非常靈敏而有效,這已為大量故障診斷的實踐所證明。油色譜分析的原理是基于任何一種特定的烴類氣體的產生速率隨溫度而變化,在特定溫度下,往往有某一種氣體的產氣率會出現最大值;隨著溫度升高,產氣率最大的氣體依此為CH4、C2H6、C2H4、C2H2。這也證明在故障溫度與溶解氣體含量之間存在著對應的關系,而局部過熱、電暈和電弧是導致油浸紙絕緣中產生故障特征氣體的主要原因。變壓器在正常運行狀態下,由于油和固體絕緣會逐漸老化、變質,并分解出極少量的氣體(主要包括氫H2、甲烷 CH4、乙烯 C2H4、乙炔 C2H2、一氧化碳CO、二氧化碳CO2等多種氣體)。當變壓器內部發生過熱性故障,放電性故障或內部絕緣受潮時,這些氣體的含量會迅速增加。這些氣體大部分溶解在絕緣油中,少部分上升至絕緣油的表面,并進入氣體繼電器。經驗證明,油中氣體的各種成分含量的多少和故障的性質及程度有關,不同故障或不同能量密度其產生氣體的特征是不同的,因此在設備運行過程中,定期測量溶解于油中的氣體成分和含量,對于及早發現充油電力設備內部存在的潛伏性故障有非常重要的意義和現實的成效。
電力變壓器的內部故障主要有過熱性故障、放電性故障及絕緣受潮等多種類型。據有關資料介紹,在對故障變壓器的統計表明:過熱性故障占63%;高能量放電故障占18.1%;過熱兼高能量放電故障占10%;火花放電故障占7%;受潮或局部放電故障占1.9%。而在過熱性故障中,分接開關接觸不良占50%;鐵芯多點接地和局部短路或漏磁環流約占33%;導線過熱和接頭不良或緊固件松動引起過熱約占14.4%;其余2.1%為其他故障,如硅膠進入本體引起的局部油道堵塞,致使局部散熱不良而造成的過熱性故障。而電弧放電以繞組匝、層間絕緣擊穿為主,其次為引線斷裂或對地閃絡和分接開關飛狐等故障。火花放電常見于套管引線對電位未固定的套管導電管、均壓圈等的放電;引線局部接觸不良或鐵芯接地片接觸不良而引起的放電;分接開關拔叉或金屬螺絲電位懸浮而引起的放電等。對變壓器故障部位的準確判斷,有賴于對其內部結構和運行狀態的全面掌握,并結合歷年色譜數據和其它預防性試驗(直阻、絕緣、變比、泄漏、空載等)進行比較。
同時還要注意由于故障產氣與正常運行產生的非故障氣體在技術上不可分離,在某些情況下有些氣體可能不是設備故障造成,如油中含水可與鐵作用生成氫氣,過熱時鐵芯層間油膜裂解也可生成氫,新的不銹鋼中也可能在加工過程中或焊接時吸附氫而運行后又緩慢釋放,另外,某些操作也可生成故障氣體,如有載調壓變壓器中切換開關油向變壓器主油箱滲漏或選擇開關在某個位置動作時懸浮電位放電的影響,設備油箱帶油補焊,原注入油含有某些氣體成分大修后濾油不徹底留有殘氣等。
它是一項方便而有效的考察繞組絕緣和電流回路連接狀況的試驗,能反應繞組焊接質量、繞組匝間短路、繞組斷股或引出線折斷、分接開關及導線接觸不良等故障,實際上它也是判斷各相繞組直流電阻是否平衡、調壓開關檔是否正確的有效手段。長期以來,繞組直流電阻測量一直被認為是考察變壓器絕緣和判斷電流回路連接狀況的唯一辦法。我們曾通過繞組直流電阻的測量分析準確判斷了多起變壓器引出線連接、套管導電板、分接開關等部位的接觸不良及匝間短路等缺陷,及時排除了變壓器運行中的重大隱患。實踐說明了繞組直流電阻試驗的有效和重要性。
繞組連同套管一起的絕緣電阻和吸收比或極化指數,對變壓器整體的絕緣狀況具有較高靈敏度,它能有效檢查出變壓器絕緣整體受潮、部件表面受潮或臟污以及貫穿性的集中缺陷,如各種貫穿性短路、瓷件破裂、引線接殼、器身內有銅線搭橋等現象引起的半貫通性或金屬性短路等。相對來講,單純依靠絕緣電阻絕對值大小對繞組絕緣作判斷,其靈敏度、有效性較低。一方面是由于測量時試驗電壓太低,難以暴露缺陷;另一方面也因為絕緣電阻與繞組絕緣結構尺寸、絕緣材料的品種、繞組溫度有關,但對于鐵芯夾件、穿心螺栓等部件,測量絕緣電阻往往能反映故障,這是因為這些部件絕緣結構較簡單,絕緣介質單一,正常情況下基本不承受電壓,絕緣更多的是起隔離作用,而不像繞組絕緣要承受高電壓,比如我們預試中曾通過絕緣搖表發現變壓器鐵芯多點接地的情況,也曾通過絕緣電阻的測量發現變壓器套管瓷件破裂、有裂紋現象。
它主要用來檢查變壓器整體受潮油質劣化、繞組上附著油泥及嚴重的局部缺陷。介質測量常受表面泄露和外界條件(如干擾電場和大氣條件)的影響,因而要采取措施減少和消除影響。現場我們一般測量的是連同套管一起的tgδ,但為了提高測量的準確和檢出缺陷的靈敏度,有時也進行分解試驗,以判斷缺陷所在位置。如在對變壓器做預試時,發現一相套管介質超標,且絕緣不合格,讀數較低,經分析后可能是由受潮引起,后拔出檢查發現套管末端底部有水分,套管已整體受潮,經烘干處理后再做試驗,各項指標均符合要求。測量泄漏電流和測量絕緣電阻相似,只是其靈敏度較高,能有效發現有些其他試驗項目所不能發現的變壓器局部缺陷。介質損耗因數tgδ和泄漏電流試驗的有效性正隨著變壓器電壓等級的提高、容量和體積的增大而下降,因此單純靠tgδ和泄漏電流來判斷繞組絕緣狀況的可能性也比較小,這主要也是因為兩項試驗的試驗電壓太低,絕緣缺陷難以充分暴露。對于電容性設備,實踐證明如電容型套管、電容式電壓互感器、耦合電容器等,測量tgδ和電容量Cx仍是故障診斷的有效手段。
它是鑒定絕緣強度等有效的方法,特別是對考核主絕緣的局部缺陷,如繞組主絕緣受潮、開裂或在運輸過程中引起的繞組松動、引線距離不夠以及繞組絕緣上附著污物等。交流耐壓試驗雖對發現絕緣缺陷有效,但受試驗條件限制,要對較高等級電壓和容量的變壓器進行耐壓試驗,由于電容電流較大,要求高電壓試驗變壓器的額定電流也較大`,目前這樣大型的高電壓試驗變壓器及調壓器在配備及使用方便性受到一定限制。
變壓器繞組變形是指在電動力和機械力的作用下,繞組的尺寸或形狀發生不可逆的變化,包括軸向和徑向尺寸的變化、器身轉移、繞組扭曲、鼓包和匝間短路等。繞組變形是電力系統安全運行的一大隱患,一旦繞組變形而未被診斷繼續投入運行則極可能導致事故,嚴重時燒毀線圈。所以大型變壓器在經過吊裝、運輸或短路電流沖擊之后應對其進行繞組變形檢測,并與以前的基礎數據進行比對分析,判斷變壓器繞組是否受力變形,能否正常運行。
綜上所述,我們應在日常工作中對電力設備預防性試驗的各項測試方法進行理論上的深入研究及實踐經驗的有效積累,只有科學、客觀地進行預防性試驗工作,才能使電氣設備預防性試驗發揮積極有效的作用,及時、準確的判斷電氣設備的健康狀態,及時排除隱患,防止電氣故障擴大和設備的損壞,保證電網的安全、穩定運行。
[1]黃志忠.變電站預防性試驗中存在的問題及對策[J].機電工程技術,2009-03-15.