摘 要:提出一種采用不等長分組新的OFDM系統(tǒng)。采用不等長分組的好處是不需要加循環(huán)前綴就能在發(fā)射序列中引入周期平穩(wěn)性,因此,可利用信號的二階統(tǒng)計特性實現(xiàn)信道盲估計。信道盲估計主要分子空間分解、相關擬合和最大似然三種方法。結合Monte Carlo仿真表明,在信噪比較低時,結合子空間分解方法計算出的誤碼性能比其余兩種方法好。
關鍵詞:OFDM;盲信道估計;誤碼率;子空間分解;特環(huán)前綴
中圖分類號:TN914 文獻標識碼:B
文章編號:1004373X(2008)0504602
Method of New Calculation on OFDM System Error Rate
LI Yanwu,ZHUO Dongfeng,SI Bingnan,NI Hongyan
(Department of Electronic Engineering,Taiyuan University of Science and Technology,Taiyuan,030024,China)
Abstract:The paper introduces long curtate new unequal OFDM system.Adopts long curtate unequal benefit to be not to require that the second order adding the circulation prefix,being therefore likely to lead into period stationarity,making use of signal therefore in launching an array,counting characteristic property realizing blind estimation of route.This technology includes three kinds of method : subspace decomposition,correlation matching,and maximum likeewise,Monte Carlo simulation show that whentheEb/No is low,function is better than the other kinds of method.
Keywords:OFDM;blind channel estimation;error rate;subspace decomposition;circulation prefix
1 引 言
正交頻分復用具有抗多徑延遲擴展、抗脈沖噪聲、高的帶寬及系統(tǒng)固有的頻率分集等優(yōu)點,已成為目前的研究熱點。傳統(tǒng)的和現(xiàn)今實際的獲得信道估計的方法是通過在發(fā)送端發(fā)送已知訓練序列(也稱為載頻圖樣),在接收端測量接收序列,再通過擬合技術來實現(xiàn),這種技術稱為標準輸入輸出技術。標準輸入輸出技術對時不變信道來說是非常有效的,僅僅需要在每次通信發(fā)起時發(fā)送一段足夠長的訓練序列即可,但對快速時變信道,則必須要周期性地發(fā)送訓練序列,這就需要占用大量的信道帶寬,大大降低了通信系統(tǒng)的吞吐量。信道盲估計是在不發(fā)送已知訓練序列的情況下,利用信道的結構信息和輸入特性,僅僅通過處理接收序列來獲得信道估計的技術,顯然信道盲估計可以大大提高通信系統(tǒng)的吞吐量。
本文提出一種采用不等長分組新的OFDM系統(tǒng)。他的優(yōu)點是沒有降低系統(tǒng)的傳輸效率,而不等長分組能在發(fā)射序列中引入周期平穩(wěn)性,因此該系統(tǒng)可利用信號的二階統(tǒng)計特性實現(xiàn)信道盲估計。本文首先介紹不等長分組的OFDM系統(tǒng),然后對其盲信道辨識性能進行研究,并給出仿真結果。
2 系統(tǒng)的模型
本文采用一種新的不等長OFDM分組編碼方式。他與通常的編碼方式不同的是:他的兩個連續(xù)的OFDM分組具有不同的長度(分別為M1,M2即M1≠M2),且沒有在OFDM分組中加循環(huán)前綴。將兩個連續(xù)的OFDM分組作為一個OFDM的幀,其幀長p=M1+M2。用w(np+p)表示第n個幀中的第p個發(fā)射信號,那么有:
采用這種編碼方式的好處是不降低系統(tǒng)的傳輸效率,同時可利用不等長分組在發(fā)射信號序列中利用產(chǎn)生的周期平穩(wěn)性進行信道的盲估計。
3 信道盲估計技術
移動通信系統(tǒng)中目前常用的信道盲估計技術主要有3種方法:子空間分解、相關匹配和最大似然方法。下面分別介紹這3種方法的最基本的實現(xiàn)。理論分析和實踐經(jīng)驗表明,并非所有的信道都能被準確估計,這也就是說只有某些滿足可辨識條件的信道才能被準確估計。信道可辨識的充分條件是:當發(fā)送數(shù)據(jù)的統(tǒng)計信息已知時,多信道中的子信道必須互質(即所有子信道的Z變換不含公共零點)。
3.1 子空間分解方法
利用信號子空間和噪聲子空間之間固有的正交關系,和文獻[1],可以得出理想情況下信道估計的表達式:
方法特點:因為信號子空間僅僅由用戶的擴頻波形和信道特性決定,而與各用戶發(fā)送信號的幅度無關,所以子空間分解方法能夠抗遠近效應和多徑衰落。要估計某用戶的信道,僅需要知道該用戶的擴頻波形即可。在方法的優(yōu)化過程中,不存在其他方法所遇到的局部極小困難。但是信號子空間方法需要知道關于信道階L的準確信息,過估計信道階會影響方法的性能。在可辨識條件不滿足時,性能會急劇下降。因為要進行特征值分解,所以方法的計算復雜度較大。
3.2 相關匹配方法
根據(jù)文獻[1]信道的先驗信息對信道作出合理的假設,得到觀察向量自相關矩陣的理論表達式為RI, 而觀察向量的自相關矩陣可用[WTHX]R[WTBX]i^=IJ∑ij=i-J+IyjyHj表示,應用擬合技術,相關匹配方法的信道盲估計為:
方法特點:相關匹配方法對信道階的選擇不敏感,所以只要知道信道階的上界,該方法就能表現(xiàn)出良好的性能。但是因為信道估計的優(yōu)化問題是非凸的,所以不可避免地容易陷入局部極小的困難。
3.3 最大似然方法
當加性噪聲為零均值的高斯過程時,結合文獻[1],再用最大似然方法得到的信道估計的表達式為:
方法特點:對足夠大的接收數(shù)據(jù)量,最大似然方法是理論上的最優(yōu)方法,可以達到Monte Carlo下界。最大似然方法對信道階的選擇不敏感,只要知道信道階的上界,就可以估計出信道。但是最大似然方法不是包含閉合解的方法,因為信道估計的優(yōu)化問題是非凸的,所以容易陷入局部極小。
4 誤碼率的計算
可以直接利用文獻[3]的結果寫出他的誤碼率的表達式:
對于上式中的,I,P取值越大,計算的結果越準確。在實際計算表明,上式收斂得非??欤谙旅娴挠嬎阒腥—㊣=400,P=300。
5 仿真結果
下面用式(1)計算OFDM系統(tǒng)的誤碼率,并將計算的結果和用MonteCarlo方法仿真得到的結果進行比較。系統(tǒng)輸入的信號s(n)是獨立同分布的(i,i,d)8PSK信號,M1=3,M2=4。信道的階數(shù)為4,其零點分別為1,-0-8,0.9exp(j9π20),1.1exp(j9π20)。
信噪比的定義為:
計算的結果如圖2所示,圖中的實線和星號分別表示采用子空間分解方法和最大似然方法的計算結果。由圖可見用式(1)計算的結果與仿真的結果吻合得非常好。
同時也看到,在本文的情況下,子空間分解方法比最大似然方法好得多,這是由于信道估計的優(yōu)化問題是非凸的,所以不可避免地容易陷入局部極小造成的。
6 結 語
本文在采用不等長分組的OFDM系統(tǒng),該系統(tǒng)不加循環(huán)前綴就可實現(xiàn)信道的盲估計。結合子空間分解方法、相關匹配方法及最大似然方法進行仿真,結果表明:該方法可實現(xiàn)信道的盲估計,而且還表明,子空間分解方法比其余的兩種都好,因為他能在發(fā)射序列中引入周期平穩(wěn)性,而且本方法因不用加入循環(huán)前綴,故不會降低傳輸效率。
參考文獻
[1]白偉,何晨,諸鴻文.CDMA移動通信系統(tǒng)中的信道盲與半盲估計[J].通信技術,2002(6):28-30.
[2]黃學軍,畢厚杰,余松煜.OFDM系統(tǒng)信道盲估計的子空間算法[J].上海交通大學學報,2004,38(Z1):6-9.
[3]黃學軍,畢厚杰,余松煜.計算OFDM系統(tǒng)誤碼率的新方法[J].通信技術,2002(9):19-20,23.
[4]劉義,王玲,劉輝.正交空時分組碼系統(tǒng)的一種新的盲信道估計算法[J].計算機應用,2006,26(12):2 793-2 795,2 799.
[5]趙錚,殷勤業(yè),張紅.空時分組碼系統(tǒng)的盲信道估計[J].電子學報,2004,32(4):557-561.
[6]黃學軍,畢厚杰.一種新的OFDM系統(tǒng)及其信道盲估計性能的研究[J].南京郵電學院學報:自然科學版,2002,22(4):1-4.
[7]Wang Z,Giannkis G B.Wireless Multicarrier Communications[J].IEEE Signal Processing Magazine,2000,22(4):29-48.
[8]Beaulieu N C.The Evaluation of Error Probabilities for Intersymbol and Cochannel Interference[J].IEEE Trans.Commun.,1991,39:1 740-1 749.
注:“本文中所涉及到的圖表、注解、公式等內容請以PDF格式閱讀原文?!?/p>